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ABSTRACT  
 

This paper presents application of an improved Harmony Search (HS) technique and 

Charged System Search algorithm (CSS) to estimate transport energy demand in Iran, based 

on socio-economic indicators. The models are developed in two forms (exponential and 

linear) and applied to forecast transport energy demand in Iran. These models are developed 

to estimate the future energy demands based on population, gross domestic product (GDP), 

and the data of numbers of vehicles (VEH). Transport energy consumption in Iran is 

considered from 1968 to 2009 as the case of this study. The available data is partly used for 

finding the optimal, or near optimal values of the weighting parameters (1968-2003) and 

partly for testing the models (2004-2009). Finally transport energy demand in Iran is 

forecasted up to the year 2020. 
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1. INTRODUCTION 

 

Growth in economic activity and population are the key factors for determining the 
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transportation sector energy demand. With respect to energy planning, the transport sector is 

crucial because, in most regions, it is either the largest and/or most rapidly growing 

consumer of liquid fuels [1]. Energy demand in Iran has increased significantly during 

recent years due to rapid developments in different sectors such as industrial, agricultural, 

transportation, commercial, and residential. Among these sectors, the energy demand 

forecast of the transportation sector, referred to as the transport energy demand forecast, has 

been the focus of some papers. Fast growth on the GDP (Gross Domestic Product) per 

capital has led to an increase in the number of vehicle owners and hence increasing the 

energy demand in this sector [2].  

Modeling energy consumption in the transport sector is dependent on many factors such 

as vehicular usage, type of car, income, housing size, vehicule type, and many other socio-

economic parameters. Including all these parameters in a sectoral energy, makes the 

modeling a difficult task since it requires a great deal of detailed study and also much data, 

for which many of the data are unavailable. Therefore, it would be better to model transport 

energy consumption with simple forms of mathematical expressions using the available data 

[3]. Modeling energy demand was often performed through time series models, regression 

models, ARIMA models, econometric models, fuzzy logic models, ANN models, and 

optimization models [4]. 

Starting from the 1980s, a number of successful meta-heuristic optimization algorithms 

have been developed to solve the optimization problems. Among them the most well known 

are genetic algorithms (GAs), particle swarm optimization (PSO), ant colony optimization 

(ACO), harmony search (HS) algorithm, imperialist competitive algorithm (ICA) and 

charged system search (CSS). These algorithms impose fewer mathematical requirements 

and they do not require very precisely defined mathematical models. Meta-heuristic 

algorithms also provide efficacious solutions to the high-scale combinatorial and non-linear 

problems. Due to these advantages, application of meta-heuristics falls into a large number 

of areas; one of them is energy models for demand forecasting. Haldenbilen and Ceylan [5] 

have used GA to estimate the transport energy demand. In 2008 Ceylan and et al. [3] 

determined transport energy in Turkey using HS considering population, GDP and vehicle 

kilometers as input. Also the energy demand in Turkey is determined using ACO by Toksari 

[6] with independent variables such as GDP, population, and import and export amounts. 

PSO based energy demand forecasting (PSOEDF) is used to forecast the energy demand by 

El-Telbany and El-Karmi [7] in 2008. They have used PSO for short term forecasting of 

Jordon’s electricity demand.  

The objective of this study is to develop a transport energy model which is able to predict 

Iran’s transport energy demand using the improved harmony search technique and charged 

system search algorithm. Various independent variables are selected. Then, future transport 

energy demand in Iran is forecasted based on the models.  

The HS algorithm was originally proposed by Geem et al. [8] for solving combinatorial 

optimization problems. The method was conceptualized using the musical process of 

searching for a perfect state of harmony. Musical performances seek to find pleasing 

harmony as determined by an aesthetic standard, just as the optimization process seeks to 

find a global solution as determined by objective function [9]. On the other hand CSS is a 

new meta-heuristic optimization algorithm inspired by the governing laws of electrical 
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physics and the Newtonian mechanics. In electrical physics, the electric charge can generate 

the electric field and exerts a force on other electrically charged objects. The electric field 

surrounding a point charge is specified by the laws of Coulomb and Gauss. Utilizing these 

principles, the CSS algorithm defines a number of solution candidates each of which is 

called charged particle (CP) and is treated as a charged sphere. Each CP can exert an 

electrical force on the other agents (CPs). These forces can change the position of other CPs 

according to the Newton’s second law. Finally, considering the Newtonian mechanics, the 

new positions of CPs are determined [10, 11]. 

In this article the HS and CSS-based models are presented in the form of linear and 

exponential mathematical expressions. These models take population, GDP and vehicle 

ownerships as an input to estimate transport energy demand to forecast sectorial 

consumption. The results reveal the efficiency of CSS algorithm to estimate transport energy 

demand. The rest of this paper is organized as follows. Section 2 deals with the HS, CSS, 

and problem formulation. Section 3 is on solution methods for the proposed energy models 

and finally conclusions are drawn in Section 4. 

 

 

2. DETERMINING TRANSPORT ENERGY DEMAND: AN OPTIMIZATION 

APPROACH 
 

2.1. Constraint conditions for truss structures 

When musicians improvise a harmony, they usually try various possible combinations of the 

music pitches stored in their memory. This kind of effective search for a perfect harmony is 

analogous to the procedure of finding an optimal solution in engineering problems. The HS 

method is inspired by the working principles of the harmony improvisation. Similar to the 

genetic algorithm and particle swarm algorithms, the HS method is a random search 

technique. It does not require any prior domain knowledge, such as gradient information of 

the objective function. However, different from those population-based approaches, it only 

utilizes a single search memory to evolve. Therefore, the HS method has the distinguished 

feature of algorithm simplicity [12]. There are four principal steps in this algorithm [9]: 

  

Step 1. Initialize a harmony memory (HM). The initial HM consists of a certain number 

of randomly generated solutions for the optimization problem under consideration. For an n 

dimension problem, an HM with the size of HMS can be represented as follows 
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between 10 and 100. 

 

Step 2. Improvise a new solution (x
'
1,x

'
2,..,x

'
n) from the HM. Each component of this 

solution, x
'
j, is obtained based on the harmony memory considering rate (HMCR). The 

HMCR is defined as the probability of selecting a component from the HM members, and 1-

HMCR is, therefore, the probability of generating it randomly. If x
'
j comes from the HM, it 

can be further mutated according to the pitching adjust rate (PAR). The PAR determines the 

probability of a candidate from the HM to be mutated. 

 

Step 3. Update the HM. First, the new solution from Step 2 is evaluated. If it yields a 

better fitness than that of the worst member in the HM, it will replace that one. Otherwise, it 

is eliminated. 

 

Step 4. Repeat Step 2 to Step 3 until a termination criterion (e.g., maximal number of 

iterations) is met. 

 

The usage of harmony memory (HM) is important because it ensures that good 

harmonies are considered as elements of new solution vectors. In order to use this memory 

effectively, the HS algorithm adopts a parameter HMCR∈ [0,1], called harmony memory 

considering (or accepting) rate. If this rate is too low, only few elite harmonies are selected 

and it may converge too slowly. If this rate is extremely high, near 1, the pitches in the 

harmony memory are mostly used, and other ones are not explored well, leading not into 

good solutions. Therefore, typically, we use HMCR=0.7 ~ 0.95 [10]. Note that a low PAR 

with a narrow bandwidth (bw) can slow down the convergence of HS because of the 

limitation in the exploration of only a small subspace of the whole search space. On the 

other hand, a very high PAR with a wide bandwidth may cause the solution to scatter around 

some potential optima as in a random search. Furthermore large PAR values with small bw 

values usually cause the improvement of best solutions in final generations which algorithm 

converged to optimal solution vector. Some works have been performed in order to improve 

the convergence of the HS. Mahdavi et al. [13] proposed a new variant of the HS, called the 

improved harmony search. This algorithm dynamically updates PAR and bw according to 

Eqs. (2) and (3): 
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where PAR(t) is the pitch adjusting rate for iteration t, PARmin is the minimum adjusting 
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rate, PARmax is the maximum adjusting rate, and Itr is the number of iteration. In addition, 

bw(t) is the bandwidth for iteration t, bwmin is the minimum bandwidth and bwmax is the 

maximum bandwidth. 

 

3.1. Charged system search algorithm 

The CSS is a novel meta-heuristic based on the Coulomb and Gauss laws from electrical 

physics and the governing laws of motion from the Newtonian mechanics. This algorithm 

can be considered as a multi-agent approach, where each agent is a Charged Particle (CP). 

Each CP is considered as a charged sphere with radius a, having a uniform volume charge 

density and is equal to 
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where fitbest and fitworst are the best and the worst fitness of all the particles; fit(i) 

represents the fitness of the agent i, and N is the total number of CPs.  

CPs can impose electric forces on the others, and its magnitude for the CP located in 

the inside of the sphere is proportional to the separation distance between the CPs, and for a 

CP located outside the sphere is inversely proportional to the square of the separation 

distance between the particles. The kind of the forces can be attractive or repelling and it is 

determined by using arij, the kind of force parameter, defined as 
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where arij determines the type of the force, where +1 represents the attractive force and −1 

denotes the repelling force, and kt is a parameter to control the effect of the kind of force. 

Therefore, the resultant force is redefined as 
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where Fj is the resultant force acting on the jth CP; rij is the separation distance between two 

charged particles defined as 
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where Xi and Xj are the positions of the ith and jth CPs, respectively; Xbest is the position of 

the best current CP, and ε  is a small positive number to avoid singularity. Pij determines the 

probability of moving each CP toward the others as 

Optimal design of frame structures is subjected to the following constrains according to 

LRFD-AISC [19] provisions: 
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where ka is the acceleration coefficient; kv is the velocity coefficient to control the influence 

of the previous velocity; and randj1 and randj2 are two random numbers uniformly 

distributed in the range (0,1). If each CP moves out of the search space, its position is 

corrected using the harmony search-based handling approach as described in [10]. In 

addition, to save the best design, a memory (Charged Memory) is utilized. 

 

2.3. The proposed method 

Predicting Iran’s transport energy demand by using the structure of the Iran socio-economic 

conditions is the main objective of this paper. In order to fulfill this aim HS and CSS 

demand estimation models are developed to estimate the future transport energy demand 

values based on the figures of population, GDP, number of vehicles [14]. The objective 

function to be minimized is the sum of the squared residuals (FSSQ) between the actual and 

predicted demand: 

 ( )
2

1

SSQF min ∑
=

−=
m

i

preact TEDTED  (11) 

 

where TED act and TED pre are the actual and predicted energy demand; respectively, and m 

is the number of observations. Also the data related to the design parameters of Iran’s 

population (POP), GDP, and numbers of vehicles (VEH) are shown in Table 1. 

Forecasting of transport energy demand based on socio-economic indicators is modeled 

by using both linear and exponential forms of equations. The linear form of equations for 

the demand estimation is written as follows 

 

 4332211lin wXwXwXwY +++=  (12) 

 

The exponential form of equations for the demand estimation models is written as 

follows 

 
7352311exp
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Table 1. POP (×106), GDP (×109 Rials), VEH (×103), and TED (MBOE) for years 1968–2003 

Years POP GDP VEH TED 
 

Years POP GDP VEH TED 

1968 27.04 99.00 20.278 13.9  1986 49.45 193.24 2584.726 78.7 

1969 27.66 111.61 64.807 15.4  1987 50.93 191.31 2636.190 84.6 

1970 28.31 122.59 118.757 17.7  1988 52.31 180.82 2672.395 83.4 

1971 29.01 139.28 173.616 20.2  1989 53.60 191.50 2698.161 90.10 

1972 29.76 162.56 245.107 22.3  1990 54.78 218.54 2760.234 96.20 

1973 30.59 174.67 333.113 27.2  1991 55.85 245.04 2867.405 104.00 

1974 31.51 196.58 476.198 31.3  1992 56.84 254.82 3010.511 110.70 

1975 32.55 206.11 728.185 38.9  1993 57.77 258.60 3091.340 122.10 

1976 33.71 242.33 996.238 47.0  1994 58.66 259.88 3162.697 144.60 

1977 35.01 236.65 1306.176 57.2  1995 59.53 267.53 3253.854 141.90 

1978 36.43 219.19 1529.441 57.5  1996 60.41 283.81 3379.396 147.90 

1979 37.96 209.92 1631.406 58.5  1997 61.31 291.77 3555.776 153.20 

1980 39.56 178.15 1732.485 54.0  1998 62.22 300.14 3760.960 161.20 

1981 41.21 170.28 1858.478 53.6  1999 63.16 304.94 3975.413 170.30 

1982 42.89 191.67 1979.818 58.6  2000 64.13 320.07 4341.927 183.40 

1983 44.58 212.88 2197.524 72.5  2001 65.13 330.57 4741.493 194.20 

1984 46.25 208.52 2411.405 78.0  2002 66.17 355.55 5300.463 208.90 

1985 47.88 212.69 2526.353 82.8  2003 67.26 379.84 6084.973 220.80 

 

where X1, X2 , and X3 are the population, GDP, and number of vehicles; respectively. wi 

(i=1,2,…) are the corresponding weighting factors. Here HS and CSS are applied in order to 

finding optimal values of weighting parameters based on actual data to estimate transport 

energy consumption in Iran. For aiming this purpose, following stages are done 

 

Step 1: The proposed algorithms are applied in order to determine corresponding 

weighting factors (wi) for each model according to the lowest objective functions. The 

related data from 1968 to 2003 are used in this stage. 

 

Step 2: Best results (optimal values of weighting parameters) for each model are chosen 

according to step1. Model is validated using the available data partly for use in estimating 

the weighting factors and partly for the testing purposes. 

 

Step 3: Demand estimation model are proposed using the optimal values of weighting 

parameters. 
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Step 4: In order to use optimization models for future projections, each input variable 

should be forecasted in future time. Following scenarios are defined for forecasting each 

socio-economic indicator in the future in Table 2.  

 

Step 5: Finally, transport energy demand is forecasted up to year 2020. 

 

Table 2. Scenarios for forecasting each socio-economic indicator 

Scenario Population* GDP* Number of vehicles* 

(a) 1.6% 4.5% 6.0% 

(b) 1.4% 4.5% 6.5% 

(c) 1.5% 5.0% 7.5% 
*
 The annual average growth rates during 2009-2020. 

 

 

3. RESULTS AND DISSCUTION 

 

In order to test the performance of the proposed methods, a numerical example is given in 

this section. For the optimization process, solution parameters of the HS are set as HMS = 

100, HMCR = 0.98 and PARmax = 0.95, PARmin = 0.35, bwmin = 10
-5

, bwmax = 0.06 and 

number of maximum iterations = 80,000. For the CSS algorithm, a population of 600 CPs is 

used also CMS is set as 100. 2000 iterations are selected as the termination criterion in order 

to stop the searching process. All computations are performed by developing a MATLAB 

code. 

Solutions of the HS and CSS models are 
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The comparison of HS and CSS outputs and their relative errors in the testing period are 

provided in Tables 3 and 4 for the period of 2004–2009. The relative errors are based on the 

observed values and the values obtained from HS and CSS techniques. For the best results 

of HS, the average relative errors on testing data are 3.325% and 3.405% for the HS linear 

and HS exponential while it is 3.312% and 3.408% for the CSS linear and CSS exponential, 

respectively. The linear form of the CSS resulted in lower relative errors when it is 

compared to other forms of the CSS and HS. Considering 10
6
 evaluations, the CSS-based 

model found the best solution, while the HS-based method obtained the best result after 

8×10
6
 function evaluations. It means that, the CSS algorithm performed really fast, since the 

required number of analyses is the lowest. The validated TED together with the observed 
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TED are shown in Figures 1 and 2. The plot depict that the resulting TED, using the 

parameters estimated from CSS, closely follow the observed data. Also Comparison 

between presented models in the literature and presented models in this study is shown in 

Table 5. Compared to other standard meta-heuristic algorithms, numerical results indicate 

the efficiency of the CSS method. 

 

 
Fig. 1. Comparison of the actual and linear validated TED using the CSS during 1968-2009 

 

 
Fig. 2. Comparison of the actual and exponential validated TED using the CSS during 1968-2009 

Table 3. Comparisons of the HS outputs and their relative errors for the period of 1996–2005 

Years 
Transport 

energy demand 

TED pre  

(lin-HS) 

Relative error 

(%) 

TED pre  

(exp-HS) 

Relative error 

(%) 

2004 233.400 227.386 2.58 226.049 3.15 

2005 252.300 244.560 3.07 243.661 3.42 

2006 270.040 259.594 3.87 259.353 3.96 

2007 265.170 276.925 -4.43 277.447 -4.63 

2008 285.210 298.665 -4.72 300.082 -5.21 

2009 313.900 309.922 1.28 313.715 0.06 

Mean 

absolute 

error 

- - 3.325 - 3.405 
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Table 4. Comparisons of CSS outputs and their relative errors for period of 1996–2005 

Years 
Transport energy 

demand 

TED pre (lin-

HS) 

Relative error 

(%) 

TED pre (exp-

HS) 

Relative error 

(%) 

2004 233.400 227.132 2.68 227.749 2.42 

2005 252.300 244.528 3.08 244.589 3.06 

2006 270.040 259.748 3.81 259.402 3.94 

2007 265.170 277.158 −4.52 276.993 −4.46 

2008 285.210 298.852 −4.78 299.712 −5.08 

2009 313.900 310.751 1.00 309.212 1.49 

Mean 

absolute 

error 

- - 3.312 - 3.408 

 

Table 5. Comparison of different models presented in the literature and present study 

Reference Method Target/Country 
Average 

relative errors (%) 

Canyurt and Ozturk [15] Genetic Algorithm Coal/Turkey 3.22 

Amjadi et al. [16] 
Particle Swarm 

Optimization 
Electricity/Iran 3.92 

Ceylan et al.  [3] Harmony Search Transport energy/Turkey 13.41 

Present study 
Improved Harmony 

Search 
Transport energy/Iran 3.32 

Present study Charged system search Transport energy/Iran 3.31 

 

The annual average of growth rate for oil consumption based on best model (CSS 

linear) between 2010 and 2020 for scenario (a), scenario (b) and scenario (c) were 4.73%, 

5.01%, and 5.63%, respectively. The annual average of growth rate for transport energy 

consumption from 1968 to 2009 was 7.99%. 

 

 

4. CONCLUSION 

 

The improved HS algorithm and CSS method have been applied to various engineering 

fields. However, their application to transport energy demand modeling is quite new, 

proposed in this study. Here, the HS and CSS models are used as an alternative solution and 

estimation technique. The HS algorithm, similar to CSS, includes a memory storing the 

feasible vectors. A new harmony vector is generated from the harmony memory, the 

memory considerations, pitch adjustments, and randomization. In each iteration of HS only 

one solution vector is generated, while in CSS a number of CPs are created. The HS utilizes 

the stored vectors in HM to create new vectors directly, while CSS uses the stored vectors in 

determining the electrical forces. Only when a CP swerves from the search space, the 

charged memory is utilized directly. In special conditions, the CSS works as a HS method 
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and uses some of operators of the HS algorithm as an auxiliary tool.  

Here, the data for 37 years (1968-2003) is utilized for developing two forms (linear and 

exponential) of HS and CSS demand estimation models, and the results reveal that the linear 

forms of the CSS-based model is a better choice for energy modeling. Three scenarios are 

designed in order to estimate Iran’s transport energy demand during 2010-2020. Validations 

of models show that CSS demand estimation models are in good agreement with the 

observed data. For the best results of CSS the average relative errors on testing data were 

3.31%. The corresponding values in forecasting for scenarios (a), (b), and (c) were 4.73%, 

5.01%, and 5.63%, respectively. Also it can be concluded that the proposed models are 

satisfactory tools for successful transport energy demand prediction. The presented results 

are instrumental to researchers, policy makers, and traffic engineers as a potential tool for 

developing energy plans. 
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