
 

INTERNATIONAL JOURNAL OF OPTIMIZATION IN CIVIL ENGINEERING  

Int. J. Optim. Civil Eng., 2021; 11(1):113-141 

 
 

 

ANALYSIS OF DOUBLE-LAYER BARREL VAULTS USING 

DIFFERENT NEURAL NETWORKS; A COMPARATIVE STUDY 
 

A. Kaveh*, † and A. Eskandari 

School of Civil Engineering, Iran University of Science and Technology, Narmak, Tehran, 

Iran 

 

ABSTRACT 
 

The artificial neural network is such a model of biological neural networks containing some 

of their characteristics and being a member of intelligent dynamic systems. The purpose of 

applying ANN in civil engineering is their efficiency in some problems that do not have a 

specific solution or their solution would be very time-consuming. In this study, four 

different neural networks including FeedForward BackPropagation (FFBP), Radial Basis 

Function (RBF), Extended Radial Basis Function (ERBF), and Generalized Regression 

Neural Network (GRNN) have been efficiently trained to analyze large-scale space 

structures specifically double-layer barrel vaults focusing on their maximum element 

stresses. To investigate the efficiency of the neural networks, an example has been done and 

their corresponding results have been compared with their exact amounts obtained by the 

numerical solution. 
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1. INTRODUCTION 
 

1.1 Barrel vaults 

The interest of utilizing skeletal space frames to cover huge column-free bays due to their 

remarkable advantages such as low cost, lightweight, small deflection because of high 

inherent stiffness, three-dimensional action in carrying loads, etc., has been increased. 
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Distinct types of skeletal space frames, which are often categorized as grids, domes, and 

barrel vaults, are mainly put in practice in sports stadiums, exhibition centers, assembly 

halls, swimming pools, shopping arcades, and industrial buildings which are typical 

instances of structures where large unobstructed areas and minimum interference from 

internal supports are architecturally required.  

Barrel vault, a very popular type of skeletal space frames, is one of the oldest forms 

which was improved in the nineteenth century by the use of iron bars [1]. These bars act as 

horizontal tie members to withstand the horizontal thrust from the vault and make structures 

supported on slender walls or columns. The earlier types of barrel vaults were constructed as 

single-layer structures and to cover large spans double-layer systems can be utilized which 

are statically indeterminate. In double-layer barrel vaults, due to the rigidity, the risk of 

instability can almost be neglected. The use of this type of barrel vaults escalates the 

stiffness of the vault structures and provides structural systems of great potential, capable of 

having bays in excess of 100 m. Consequently, they are considered large-scale structures, so 

their design requires enough precision to be optimum [2]. Regarding their optimization, 

Kaveh et al. have done many types of research [3-8]. 

Braced barrel vaults [1] are formed on a cylindrical surface with a circular basic curve. 

However, there is a possibility of utilizing other forms such as a parabola, ellipse, or 

funicular. Fig. (1) depicts the habitual arrangement of braced barrel vaults. The type of 

braced barrel vaults and the location of supports expressed as L/R, influence its structural 

behavior where L and R represent the distance between the supports in the longitudinal 

direction and the radius of curvature of the transverse curve, respectively. 

 

 
Figure 1. Braced barrel vaults 

 

The response of braced barrel vaults while subjected to loading has been identified in 

three principal modes in the following [1]:  

(a) Arch mode: 

If the structure is only supported along its sides, it behaves as an arch structure, Fig. (2a). 

This type of structure relies on circumferential bending stiffness to resist displacement in the 

radial direction and also can be considered as a relatively soft structure. 

(b) Beam mode: 

If a barrel vault is only supported at its ends, it acts as a simple beam, Fig. (2b), which 
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has longitudinal compressive stresses near the crown of the vault, longitudinal tensile 

stresses towards the free edges, and shear stresses towards the supports. To compare with the 

arch structure, this type of structure is relatively stiff and brittle. The end support could be 

provided by a thin diaphragm. If the diaphragm is rigid, the structure will behave as an 

encastre beam instead of a pinned one. Also, If the diaphragm is rigid but allowed to rotate, 

then this will only affect stresses near the end of the structure due to the Saint-Venant effect. 

(c) Shell mode: 

If a barrel vault is supported along both sides and both ends, Fig. (2c), the structure 

responds as a thin shell. Despite the fact that this structure looks as if it is partly an arch and 

partly a beam, there is a need for radial deflection of the structure to behave as an arch 

structure which is prevented by transverse shear in the shell. This means that the loads acting 

on the structure will be supported by a complex system of forces acting tangentially to the 

surface of the barrel vault. 

 

 
(a) Arch mode 

 
(b) Beam mode 

 
(c) Shell mode 

Figure 2. Principal modes of braced barrel vaults 
 

1.2 Formex algebra and formian fundamentals 

In the analysis of double-layer barrel vaults, numerous nodes and members are involved 

which make them time-consuming. So, configuration processing is an issue that can be 

simplified utilizing the concept of Formex algebra [9] or the theory of graphs [10]. Formex 

algebra is a mathematical system consisting of a set of abstract objects known as formices 

and a number of rules in accordance with which these objects can be manipulated. It 

implements a favorable basis for solutions to problems in data generation and computer 

graphics. This mathematical system has simplified configuration processing in large scale 

structures such as double-layer grids, barrel vaults, domes. The early ideas on which Formex 

algebra is based were developed by Prof. H. Nooshin during the years 1972-1973. The 

advantages of Formex formulation for data generation have been outlined by Nooshin [11] 

in the following: 

 The process of data generation for structural systems is significantly simplified. The more 

complicated a structure is, the more beneficial it is to resort to Formex formulation. 

 The decrease in storage requirements can be enormous. For large-scale structures, the 

storage needed data in the explicit form is several hundred times more than that 

demanded for data stored in the Formex format. 

 While the design proceeds, the formulation can be modified as simply as changing a 

document on a word processor, and it can be manipulated to reflect the contemporary 

status after making any necessary changes in geometry, loading, or support conditions. 
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 It is drawing a configuration to generate the data for the intended structure, that is 

essential. However, once the Formex formulation is obtained, the upshot can be displayed 

on a monitor or printed. 

 An implied or actual nodal ordering system is required neither for a Formex description 

of a configuration nor for obtaining stress analysis by utilizing the input data in a 

compatible stress analysis software.  

 The Formex data generation is more advantageous compared with other available 

schemes that are analysis software dependent and consequently lack versatility. On the 

other hand, the input data produced by the Formex formulation can be employed, via 

Formian, in a variety of analysis software, such as SAP2000, ABAQUS, and LUSAS. 

In the Formex algebra, structural elements are defined based on their positions towards 

three basic directions U1, U2, and U3 being considered as suitable counterparts to axes X, 

Y, and Z in the three-dimensional Cartesian system. Parallel lines relative to these basic 

directions are named normat lines, and points of their intersections are known as normat 

points. Programmers determine distances between these normat lines individually. In the 

following instance, Fig. (3), the distances are considered a unity. In the Formex algebra, for 

example, the location of node C set in the lower layer is represented by three successive 

numbers separated by colons and put inside square brackets as: [1, 1, 0] an element of the 

top layer located between nodes A and B, Fig. (3), is described as: [2, 2, 1; 4, 2, 1], where 

the third coordinate indicates the position of the lower or the top layer measured along with 

the third direction U3. Member CD located in the lower layer is described as: [1, 1, 0; 3, 1, 

0], while the cross-brace AD is expressed as: [2, 2, 1; 3, 1, 0]. 
 

 
Figure 3. Configuration of component parts of space truss 

 

In the following, a sample of the double-layer barrel vault, Fig. (4), and its corresponding 

programming language in Formian, Fig. (5), are shown.  



ANALYSIS OF DOUBLE-LAYER BARREL VAULTS USING DIFFERENT … 117 

 

 

Figure 4. Plan and elevation of the double-layer barrel vault 

 
(*) Double-layer Barrel Vault (*) 

M= ; (*) top modules along with U2 (*) 

N= ; (*) top modules along with U3 (*) 

S= ; (*) span (*) 

H= ; (*) rise (*) 

D= ; (*) depth (*) 

L= ; (*) length (*) 

v=0; (*) view adjuster (*) 

A=2*atan|(2*H/S); (*) sweep angle (*) 

Rt=S/(2*sin|A); (*) top radius (*) 

Rb=Rt-D; (*) bottom radius (*) 

TOP=rinit(M,N+1,2,2)|[Rt,0,0; Rt,2,0]# 

rinit(M+1,N,2,2)|[Rt,0,0; Rt,0,2]; 

BOT=rinit(M-1,N,2,2)|[Rb,1,1; Rb,3,1]# 

rinit(M,N-1,2,2)|[Rb,1,1; Rb,1,3]; 

WEB=rinit(M,N,2,2)|lamit(1,1)|[Rt,0,0; Rb,1,1]; 

B=TOP#BOT#WEB; 

B1=bc(1,A/M,L/(2*N))|B; 

BV=verad(0,0,90-A)|B1; 

use &,vm(2),vt(2), 

vh(v,2.75*Rt,-Rt,0,0,Rt,0,1,Rt); 

clear; draw BV; 
Figure 5. Formian programming of the double-layer barrel vault 

 

1.3 Neural networks 

Artificial neural networks (ANNs) are not only massive parallel computational models but 

also mathematical machine learning techniques that imitate the mechanism of learning in 

biological organisms consisting of a large number of processing elements called neuron 

which are connected to one another by the use of axons and dendrites and connecting 

regions between axons and dendrites are referred to as synapses, Fig. (6a) [12, 13]. The 

structure of ANNs, which is similar to that of a human brain, contains a large number of 
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processing elements each of which can have many inputs but only one output. Each output, 

however, branches out to the input of many other processing elements. The topology of 

ANNs might be in the form of either feed-forward or recurrent and their corresponding 

learning can be supervised or unsupervised depending on their topology. Feedforward neural 

networks are usually trained utilizing supervised training procedures. During the process, 

output signals are obtained by the translation of input signals using an appropriate transfer 

function. Weights, which are strengths for processing elements, are applied to input signals 

according to their importance. After receiving all input signals by processing elements, it 

computes the total input being received from its input paths based on these weights, Fig. 

(6b), i.e., 

 

𝑛𝑒𝑡𝑃𝑡 = ∑ 𝑤𝑠𝑡𝑜𝑃𝑠  

𝑠

 (1) 

 

where 𝑤𝑠𝑡 is the connecting weight from s the source layer to t the target layer and 𝑜𝑃𝑠 is the 

output produced using pattern p as the result of the input 𝑜𝑃(𝑠−1). 

Although ANNs do not really solve the problem in a strictly mathematical sense, they 

demonstrate information processing characteristics that provide an approximate solution to a 

given problem. A trained network demonstrates some various pros over the mathematical 

process of computation. It provides a swift mapping of a given input into the desired output 

quantities. The application of ANNs is even more significant in nonlinear structural analysis 

and also as a rapid reanalyzer in optimal design. There has been significant interest in the 

application of neural networks in subjects of structural analysis and design [14-26]. In this 

paper, four artificial neural networks, namely FFBP, RBF, ERBF, and GRNN are applied to 

analyze space structures. Various aspects of these nets and parameters affecting the 

performance of each net are investigated. One example is presented and a comparison has 

been made on the performance of these nets. The response of each net for the same input has 

been compared to illustrate their efficiency. 

 

 
(a) 

 
(b) 

Figure 6. Neural network: (a) biological neuron, (b) artificial neural network 
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1.3.1 Feedforward backpropagation 

1.3.1.1 Backpropagation neural nets 

The backpropagation learning algorithm was first introduced by Parker [27] and Werbos 

[28] independently, and it became generalized and developed into a workable process by 

Rumelhart et al [29]. Various applications have been ascertained for backpropagation since 

1986. Single-layer networks may not have the decision-making complexity required to solve 

a broad range of structural engineering problems. Due to this deficiency, multi-layer 

networks have been promoted from single-layer networks that are capable of learning any 

constant mapping to arbitrary accuracy. The training procedure of this net comprises three 

stages including the feedforward of the input training pattern, the calculation and 

backpropagation of the correlated error, and the adjustment of the weights. The delta error 

backpropagation algorithm is habitually employed for its supervised learning. It is 

essentially a steepest descent algorithm to adjust the weight connection strength. After 

training, the application of the net involves only the computations of the feedforward phase. 

Even if the training is time-consuming, a trained net can produce its output so rapidly. The 

method of training employed in this paper is backpropagation. This approach is one of the 

most successfully and widely utilized algorithms in artificial neural networks. In 

backpropagation, learning is accomplished when a set of training pairs is propagated through 

a network consisting of an input layer, one or more hidden layers, and an output layer. Each 

layer has its corresponding units and weight connections.  

The procedure of the output layer is computing outputs, then subtracted from their exact 

amounts (target outputs) to obtain a sum of square error that illustrates the level at which the 

network has learned the input-output data and gradient of the learning process. 

The output of a unit is obtained by passing the value of the net-sum through the 

activation function as: 

 

𝑂𝑝𝑡 = 𝑓𝑡(𝑛𝑒𝑡𝑝𝑡) (2) 

 

The sum of the squares of the error for a single pattern at the output units is calculated 

by: 

 

𝐸𝑝 =
1

𝑁𝑜𝑢𝑡𝑝𝑢𝑡
∑ (𝑡𝑝 − 𝑜𝑝)

2
𝑛𝑒𝑡𝑤𝑜𝑟𝑘

𝑜𝑢𝑡𝑝𝑢𝑡𝑠

 (3) 

 

where 𝐸𝑝 is the measure of the error of pattern 𝑝, 𝑡𝑝 is the target output, 𝑜𝑝 is the obtained 

output at the output nodes, and 𝑁𝑜𝑢𝑡𝑝𝑢𝑡 is the number of the output units. 

After processing all patterns, the total sum of the error is given by: 

 

𝐸 =
1

𝑃𝑁𝑜𝑢𝑡𝑝𝑢𝑡
∑ ∑ (𝑡𝑝 − 𝑜𝑝)

2
𝑛𝑒𝑡𝑤𝑜𝑟𝑘

𝑜𝑢𝑡𝑝𝑢𝑡𝑠𝑃

 (4) 
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where 𝑃 is the number of all patterns in the training set. The delta signal for the output layer 

is defined as: 

 

δpt = (t𝑡𝑝 − opt)fṫ(netpt) (5) 

 

and for the hidden layers: 

 

δpt = fṫ(netpt) ∑ δpt

k

wkt (6) 

 

The derivative of the activation function that is utilized in Eq. (5) is given as: 

 

fṫ =
∂o𝑝𝑡

∂net𝑝𝑡

= o𝑝𝑡(1 − o𝑝𝑡) (7) 

 

where 𝑘 indicates an upper layer unit (the output layer is the uppermost, and the input layer 

is the lowermost layer). 

The learning rule associated with the backpropagation method is known as the 

generalized delta rule [31]. According to this rule, to modify the weights in the network, for 

a given pattern 𝑝, the following relation can be employed: 

 

Δwst(𝑛) = ηδpto𝑝𝑡 + αwst(n − 1) (8) 

 

where 𝑛 is the input-output presentation number and ℎ is the learning rate and 𝑎 is the 

momentum. 

The momentum,𝑎 , is a fraction that is multiplied by the previous weight change and 

added to the current weight change; 𝑎 should be positive and less than 1. These two terms 

are not independent and should be selected and adjusted as a pair. Although the dynamic 

adjustment of both parameters can generally accelerate convergence, a tremendous value for 

either ℎ or 𝑎 may lead to instability in the training process. Once the change to the weights 

is observed, the new weights are measured as: 

 

wst(𝑛 + 1) = wst(𝑛) + Δwst(𝑛) (9) 
 

The errors are usually huge at the commencement of the learning process, which requires 

more changes in weights in the preceding stages of the learning process. By applying the 

backpropagation procedure, the network determines delta signals for the output layer and 

hidden layers, utilizing Eqs. (5) and (6), respectively. These deltas are employed to measure 

the changes for all amounts of weight according to Eq. (8) and the subsequent weight values 

using Eq. (9). 
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1.3.1.2 Feedforward neural networks 

In artificial neural networks, feedforward neural networks (FFNN) incorporate a set of 

processing elements called neurons [30, 31]. Feedforward neural networks, trained with a 

backpropagation learning algorithm, Fig. (7), are the most popular neural networks 

employed for a wide variety of applications. There are no cycles or loops in feedforward 

networks. In such networks, the information moves only in the forward direction, from the 

input layer, through the hidden layers, and to the output layer. Through the procedure, each 

neuron computes the sum of the weights of the inputs at the presence of a bias and passes 

this sum through an activation function, such as the sigmoid function, so that the output is 

obtained. This process can be represented as follows:  

 

ℎ𝑗 = ∑ 𝑖𝑤𝑗,𝑖

𝑚

𝑖=1

𝑥𝑖 + ℎ𝑏𝑗 (10) 

 

where 𝑖𝑤𝑗 ,i is the weight connecting neurons [𝑖 = (1, 2,... 𝑚), and [𝑗 = (1, 2,..., [𝑟,𝑘]) ℎ𝑏𝑗 

is a bias in the hidden layer, 𝑚 is the total number of neurons in the input layer, 𝑥𝑖 is the 

corresponding input data, 𝑟, 𝑘 is the total number of neurons in the hidden layers, and 𝑛 is 

the total number of neurons in the output layer. 

 

 
Figure 7. The topology of the feedforward backpropagation network with two hidden layers 

 

The training process is attained to modify the weights and bias until some error criterion 

is observed. Above all, one predicament is to select a proper training algorithm. Moreover, it 

is very complex to design the neural network because of numerous elements, such as the 

number of neurons in the hidden layer, the interconnection between neurons and layer, error 

function, and activation function that influence the performance of training. The training 

procedure begins with arbitrary values of the weights, which might be random numbers, and 
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proceeds iteratively. Each iteration of the complete training set is termed an epoch. In each 

one, the network adjusts the weights in the direction that decreases the error. As the iterative 

process of incremental adjustment continues, the weights progressively converge to the 

locally optimal set of values. A multitude of epochs is usually required before training is 

completed. For a supplied training set, the backpropagation learning proceeds in either 

pattern mode or batch mode. The former performs weight updating after each training 

pattern. The latter, however, does so after all training sets. The pattern mode is preferred 

over the batch mode because it demands less local storage for each synaptic connection. 

Furthermore, given that the patterns are haphazardly presented to the network, the use of 

pattern-by-pattern updating of weights makes the search in weight space stochastic, which 

reduces the probability of being trapped in a local minimum through the back-propagation 

algorithm. On the other hand, the use of the batch mode of training provides a more accurate 

estimation of the gradient vector [32, 33]. 

In the prediction mode, data flows forward through the network, from inputs to outputs. 

The network processes one example at a time, producing an estimation of the output value(s) 

based on the input value(s). The resulting error is utilized to evaluate the quality of 

prediction of the trained network. In back-propagation learning, the procedure commences 

with a training set and employs the back-propagation algorithm to compute the synaptic 

weights of the network. The aim is to design a generalized neural network. A network is 

termed generalized if it precisely computes the input-output relationship for input-output 

patterns never used in training the network [34]. When the learning process has been done 

by too many iterations (i.e. the neural network is overtrained or overfitted, while there is no 

difference between overtraining and overfitting), the neural network may memorize the 

training data which makes the neural network less capable of generalizing similar input-

output patterns. The neural network produces nearly thorough results for data from the 

training set but fails for data from the test set. Overfitting can be compared to an improper 

choice of the degree of polynom in the polynomial regression. Severe overfitting can occur 

with noisy data, even when there are numerous training cases than weights. The basic 

condition for good generalization is the existence of an adequately large set of training 

cases. This training set must be at the same time and a representative subset of all cases that 

are the aim of generalization. The importance of this condition is related to the fact that there 

are two various types of generalization: interpolation and extrapolation. Interpolation uses 

cases that are more or less surrounded by nearby training cases; otherwise, that is 

extrapolation. In particular, cases that are outside the range of the training data need 

extrapolation. Although interpolation can often be done reliably, extrapolation is notably 

unreliable. Consequently, it is important to have sufficient training data to evade the need for 

extrapolation. 

 

1.3.2 Radial basis function 

The idea of employing RBFs as approximation functions was first introduced by Hardy [35] 

in 1971 when he applied the multiquadric RBFs to fit irregular topographical data. RBF 

neural networks were addressed in 1988 [36], which have recently drawn much attention due 

to their significant generalization capability and also simple network structures that limit 

unnecessary and lengthy calculations in comparison with the Multilayer Feedforward 
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Network (MFN). Some studies of universal approximation theorems on RBF have revealed 

that any nonlinear function over a compact set with arbitrary accuracy can be approximated 

by RBF neural network [37, 38]. Radial Basis Function Neural Networks (RBF) are 

universal approximators and a particular type of feedforward neural networks with radial 

basis functions employed as activation functions. RBF neural networks are commonly 

implemented for regression, classification, pattern recognition, and time series forecasting 

problems. Besides their great global approximation capability, RBFs benefit from other 

powerful features such as the compact structure, being able to approximate any continuous 

network, and their tolerance to noise. Similarly, to any other neural networks, a fundamental 

element in the performance of RBF is the learning procedure. The aspiration of this process 

is to tune the parameters of the neural network so as to minimize some error criterion. An 

RBF neural network with a typical topology of a single hidden layer has three principal 

parameters including the connection weights, widths, and centers. The conventional 

approach for training an RBF is to utilize two sequential stages training process. In the first 

stage, the centers of the hidden layer and the widths are obtained by taking the advantage of 

some unsupervised clustering algorithm such as k-means [39], vector quantization [40], or 

decision trees [41]. In the second stage, the connection weights between the hidden layer and 

the output layer are set. Habitually, these weights are determined linearly by applying the 

simple linear least squares (LS), the orthogonal least squares (OLS) algorithms [42, 43], or a 

gradient descent algorithm [44]. 

An RBF network in its simplest configuration is a three-layer feedforward neural network 

whose first layer corresponds to the inputs of the network, its second is a hidden layer 

consisting of several RBF nonlinear activation units, and the last one correlates to the final 

output of the network. Activation functions in RBF neural networks are conventionally 

implemented as Gaussian functions. Fig. (8) displays an illustration of the RBF topology. 

 

 
Figure 8. Structure of RBF neural network 

 

To demonstrate the working flow of the RBF, a set of data 𝐷 having 𝑁 patterns of (𝑥𝑝,𝑦𝑝) 

is supposed where 𝑥𝑝 is the input of the data set, and 𝑦𝑝 is the actual output. The output of 

the 𝑖-th activation function 𝜙𝑖 in the hidden layer of the network can be computed applying 
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Eq. (11) based on the distance between the input pattern 𝑥 and the center 𝑖. 
 

𝜙𝑖(‖x − c𝑖‖) = exp (−
‖x − c𝑖‖

2

2𝜎𝑖
2 ) (11) 

 

where ‖ . ‖ is the Euclidean norm, 𝑐𝑖 and 𝜎𝑖 are the center and width of the hidden neuron 𝑖, 
respectively. 

Then, the output of the node k of the output layer of the network can be calculated 

utilizing the Eq. (12): 

 

𝑦𝑘 = ∑ 𝜔𝑗𝑘

𝑛

𝑗=1

𝜙𝑗(𝑥) (12) 

 

Most classical methods for training RBFs are conducted in two steps. In the first one, the 

centers and widths are determined using some unsupervised clustering algorithm, whereas in 

the second step the connection weights between the hidden layer and the output layer are 

found in a way such as an error criterion like Mean Squared Error (MSE) is minimized over 

all the data set. 

The concept of Radial Basis Functions networks arises from the theory of function 

approximation. The main features of these networks are outlined as follows: 

1. They are two-layer feedforward neural networks. 

2. Their hidden nodes implement a set of radial basis functions (e.g. Gaussian functions). 

3. Training the networks is divided into two stages; initially, the weights from the input to 

hidden layer are determined, and then the weights from the hidden to output layer are 

obtained. 

4. The training/learning is pretty swift. 

5. RBF networks are very accurate at interpolation.  

 

1.3.2.1 Comparison between RBF networks and BP networks 

There are various similarities and distinctions between RBF and BP: 

Similarities 

1. Being nonlinear feedforward neural networks. 

2. Being universal approximators. 

3. Being employed in alike application fields. 

Distinctions 

1. An RBF network has normally a single hidden layer, whereas BP neural networks can 

have any number of hidden layers. 

2. RBFs are fully connected, while it is common for BP networks to be only partially 

connected. 

3. In BPs, computation nodes in separate layers share a common neuronal model and not 

necessarily the same activation function. In RBF networks, however, hidden nodes (basis 

functions) perform very differently and have a very distinct purpose from output nodes. 
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4. In RBFs, the argument of each hidden unit activation function is the distance between the 

input and the weight (RBF centers), whereas, in Backpropagation, it is the inner outcome 

of the input and the weight. 

5. BP nets are frequently trained with a single global supervised algorithm, while RBF 

neural networks are usually trained one layer at a time with the first layer unsupervised. 

6. BPs construct global approximations to nonlinear input-output mapping with distributed 

hidden representations, whereas RBF nets conduce to apply localized nonlinearity at the 

hidden layer to construct local approximations. Although for approximating nonlinear 

input-output mappings, the RBF networks can be trained much quicker, BP may need 

fewer parameters. 

 

1.3.3 Extended radial basis function 

There are a few impediments to the conventional RBF approach, which might be limiting its 

effectiveness as a metamodeling strategy, hence introducing a novel extension to the RBF 

approach that successfully overcomes its contemporary deficiencies is required. More 

particularly, RBF neural networks generate an interpolating surface that is unique with 

respect to a supplied set of prescribed data points. Solving a square system of linear 

equations results in the interpolating surface. The incapability of preventing resulting 

spurious local minima is a considerable deficiency. Several researchers have suggested 

modifications to the conventional RBF networks to overcome some of their restrictions. In 

1987, Powell [45] offered the theory of developing the performance of RBFs by augmenting 

them with a set of polynomial functions and imposing limitations, which leads to a scheme 

of linear equations. Although these modifications enhance the performance of RBF neural 

networks, they do not lead to an increase in their flexibility regarding the model building 

process. There have been significant strides in constructing metamodels with smoothing 

properties. Girosi [46] proposed the Support Vector Machine (SVM) technique from the 

context of data interpolation. The SVM technique takes smoothness constraints into the 

consideration to be incorporated into the model building process. Having considered the 

pros and cons of RBFs, there is a necessity of introducing an approach not only containing 

the advantages of RBF nets but also covering its drawbacks. Therefore, a method called the 

Extended Radial Basis Function (ERBF) approach has been proposed [47], which 

intentionally evades the notion of unique solvability. This new technique simplifies building 

metamodels for designers and ultimately leads to more precise and efficient metamodels. 

The following illustrates the development of a new type of basis functions known as the 

Nonradial Basis Functions (NRBFs), which will produce an integral component of the 

ERBF approach. 

 

1.3.3.1 Nonradial basis functions 

The multiquadric RBF is conceivably one of the most efficient basis functions among the 

available RBFs which was the motivation for embedding some of its characteristics within 

NRBFs. Nonradial basis functions, as can be realized by the name, are not functions of the 

Euclidean distance r. On the contrary, they perform as individual coordinates of generic 

points x relative to a given data point xi, in each dimension independently. The coordinate 
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vector is defined as ξi = x − xi, which is a vector of m components, each corresponding to a 

single coordinate dimension. Hence, ξj
i is the coordinate of each point x relative to the data 

point xi along the j-th dimension. Fig. (9) represents the variation between the Euclidean 

distance r employed in RBFs and the relative coordinates ξ applied to NRBFs for a two-

dimensional case. The NRBFs for the i-th data point and the j-th dimension is expressed as 

ϕij composed of three different components: 

 

𝜙𝑖𝑗(𝜉𝑗
𝑖) =  𝛼𝑖𝑗

𝐿 𝜙𝐿(𝜉𝑗
𝑖) + 𝛼𝑖𝑗

𝑅 𝜙𝑅(𝜉𝑗
𝑖) + 𝛽𝑖𝑗𝜙𝛽(𝜉𝑗

𝑖) (13) 

 

where αij
L, αij

R, and βij are coefficients to be determined based on given problems; and the 

superscripts 𝐿 and 𝑅 represent left and right, respectively. Fig. (10) shows a generic basis 

function along with one of the dimensions for random values of αL, αR, and β. The functions 

of ϕL,ϕR, and ϕβ are illustrated in Table 1. Four distinct regions (I–IV) are drawn in Fig. 

(10), each corresponding to a row in Table 1. 

 

Table 1: Nonradial basis function 

Region Range of 𝝃𝒋
𝒊 𝝓𝑳 𝝓𝑹 𝝓𝜷 

I 𝜉𝑗
𝑖 ≤ −𝛾 (−𝑛𝛾𝑛−1)𝜉𝑗

𝑖 + 𝛾𝑛(1 − 𝑛) 0 𝜉𝑗
𝑖 

II −𝛾 ≤ 𝜉𝑗
𝑖 ≤ 0 (𝜉𝑗

𝑖)
𝑛
 0 𝜉𝑗

𝑖 

III 0 ≤ 𝜉𝑗
𝑖 ≤ 𝛾 0 (𝜉𝑗

𝑖)
𝑛

 𝜉𝑗
𝑖 

IV 𝜉𝑗
𝑖 ≥ 𝛾 0 (𝑛𝛾𝑛−1)𝜉𝑗

𝑖 + 𝛾𝑛(1 − 𝑛) 𝜉𝑗
𝑖 

 

 
Figure 9. Definition of coordinate 𝝃 
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(a) With tilt: 𝛽 = 0 

 
(b) With tilt: 𝛽 ≠ 0 

Figure 10. Development of nonradial basis functions 

 

 
Figure 11. Nonradial basis function in two dimensions 

 

The NRBF takes distinct forms in different regions. It is an 𝑛-th-order monomial 𝛼ξn (n 

≥ 2 is an even integer) supplemented by a linear component or tilt (𝛽ξ) in the central regions 

between ξ = −𝛾 and ξ = +𝛾 (regions II and III). Beyond these regions on either side 

(regions I and IV), the function is linear, such that the function and its first derivative are 

constant at ξ = ±𝛾. A small value of 𝛾 would cause a smaller curved portion surrounding 

ξ = 0. So, 𝛾 can be considered as a smoothness parameter. Fig. (10a) shows the case where 

the coefficient β = 0 (no tilt), while Fig. 4b depicts the case where 𝛽 ≠ 0. Particularly, the 

parameters utilized to plot Fig. (10) are as follows: 𝑛 = 2, 𝛾 = 2.5, 𝛼𝐿 = 2, 𝛼𝑅 = 5, and 

𝛽 = 4. For most real-life problems, values of 𝑛 = 2 or 4 are suggested. There is no obvious 

benefit in terms of performance gain for greater values of 𝑛. Appropriate values for γ will be 

influenced by the magnitudes of the design variables. Nevertheless, normalization of the 

design space, say between 0 and 1, might prevent the necessity for the designer to choose a 

value for 𝛾. In general, one would select a high value of 𝛾 for better smoothing properties of 

the metamodels. The thorough NRBF for the 𝑖-th data point is set as the sum of the 

individual basis functions in each dimension as: 

 

𝜙𝑖(𝜉𝑖) = ∑ 𝜙𝑖𝑗(𝜉𝑗
𝑖)

𝑚

𝑗=1

 (14) 
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1.3.3.2 Metamodeling using the ERBF approach 

The ERBF is a metamodeling approach that utilizes a combination of radial and nonradial 

basis functions. This novel concept holds the appealing features of both classes of basis 

functions: the effectiveness of the multiquadric RBFs together with the flexibility of the 

NRBFs.  

 

Combining Radial and Nonradial Basis Functions 

As discussed beforehand, the ERBF approach promotes the notion of applying more than 

one basis function for each data point. By using these two different basis functions, the 

ERBF approximation function is as: 

 

𝑓(𝑥) = ∑ 𝜎𝑖𝜓

𝑛𝑝

𝑖=1

(‖𝑥 − 𝑥𝑖‖) + ∑ 𝜎𝑖(𝑥 − 𝑥𝑖)

𝑛𝑝

𝑖=1

 (15) 

 

where 𝜓(‖𝑥 − 𝑥𝑖‖ ) and 𝜙𝑖(𝑥 − 𝑥𝑖) are obtained in Eqs. (11) and (14), respectively. 

Remark that every data point 𝑥𝑖 is correlated with two different but complementary basis 

functions: a) the typical RBF represented in Eq. (11) and b) the basis function determined in 

Eq. (14). By taking the advantage of the definition of NRBFs provided in Eqs. (13) and (14) 

the following equation can be obtained: 

 

𝑓(𝑥) = ∑ 𝜎𝑖𝜓

𝑛𝑝

𝑖=1

(‖𝑥 − 𝑥𝑖‖) + ∑ ∑[𝛼𝑖𝑗
𝐿 𝜙𝐿(𝜉𝑗

𝑖) + 𝛼𝑖𝑗
𝑅 𝜙𝑅(𝜉𝑗

𝑖) + 𝛽𝑖𝑗𝜙𝛽(𝜉𝑗
𝑖)]

𝑚

𝑗=1

𝑛𝑝

𝑖=1

 (16) 

 

where ϕL, ϕR, and ϕβ are represented in Table 1. The following coefficient vectors and 

their sizes are defined as: 

 

𝛼𝐿 = {𝛼11
𝐿   𝛼12

𝐿   …  𝛼1𝑚
𝐿   …  𝛼(𝑛𝑝)(𝑚)

𝐿 }
(𝑚𝑛𝑝)×(1)

𝑇
 (17) 

𝛼𝑅 = {𝛼11
𝑅   𝛼12

𝑅   …  𝛼1𝑚
𝑅   …  𝛼(𝑛𝑝)(𝑚)

𝑅 }
(𝑚𝑛𝑝)×(1)

𝑇
 (18) 

𝛽 = {𝛽11  𝛽12    …  𝛽1𝑚   …   𝛽(𝑛𝑝)(𝑚)}
(𝑚𝑛𝑝)×(1)

𝑇
 (19) 

{𝜎} = [𝜎1   𝜎2 … 𝜎𝑛𝑝
]

𝑇
 (20) 

 

In addition to these vectors, the coefficient vector σ is obtained in Eq. (20). The vectors 

𝛼𝐿, 𝛼𝑅, and β, just determined, contain 𝑚𝑛𝑝 elements each, and the vector 𝜎 includes 𝑛𝑝 

coefficients. So, the total number of coefficients to be calculated so as to fully specify the 

metamodel in Eq. (16) is given by 𝑛𝑢 = (3𝑚 +  1)𝑛𝑝. 

The ERBF approach results in an underdetermined system of equations whose resulting 

freedom will be judiciously employed. Types of linear systems of equations for various 
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metamodeling techniques are represented in Table 2. 

 
Table 2: Type of linear system of equations for various metamodeling techniques 

Method 
Number of 

equations 

Number of 

unknowns 
Type of system 

Interpolative 

solutions 

Solution 

approach 

RBF 𝑛𝑝 𝑛𝑝 Square Unique Matrix inverse 

ERBF 𝑛𝑝 (3𝑚 + 1)𝑛𝑝 Underdetermined Family 
Linear 

programming 

 

1.3.3.3 Features 

There are numerous significant advantages in employing extension, some of which are in the 

following: (1) it acts as a global nonlinear model to smoothly link together the various local 

linear models; (2) it extends the RBFs capability for extrapolating and generalizing more 

meaningfully; (3) it works as a unifying model that brings together the different 

approximators including splines and CMAC neural network models; and (4) this ERBF 

extension makes feasible the applications of statistical modeling and experiment design 

techniques to the investigation of general neural network approximation models. 

 

1.3.4 Generalized regression neural network 

GRNN is a type of supervised network which has been introduced by Specht [48]. GRNN is 

capable of producing constant value outputs. GRNNs are three-layer (input, hidden, and 

output layer) networks in which there is one hidden neuron for each training pattern in the 

hidden layer, Fig. (12). The generalized regression neural networks (GRNN) are memory-

based networks that produce estimations of continuous variables and converge to the 

underlying regression surface. GRNNs are based on the estimate of probability density 

functions, fast training time, and being able to model non-linear functions. The GRNN is a 

one-pass learning algorithm with a massive parallel structure. It is that, even with sparse data 

in a multidimensional computation space, the algorithm implements smooth transitions from 

one perceived value to another. The algorithm can be employed for any regression problem 

in which an assumption of linearity is not considered. GRNNs are evaluated as a normalized 

Radial Basis Functions network in which there is a hidden unit centered at every training 

case. These Radial Basis Function units are density functions such as the Gaussian. The only 

weights that require to be determined are the widths of the RBF units. These widths are 

expressed as smoothing parameters (𝑟). The main shortcoming of GRNN is not being able 

to ignore irrelevant inputs without considerable modifications to the basic algorithm. 

Consequently, GRNN is not likely to be the preferred choice when there are more than 5 or 

6 number redundant inputs. The regression of a dependent variable, Y, on an independent 

variable, X, is the calculation of the most probable value of Y for each value of X based on a 

finite number of possibly noisy measurements of X and the associated amounts of Y. To 

implement system identification, it is habitually essential to assume some functional forms. 

In the case of linear regression, for example, the output Y is considered to be a linear 

function of the input, and the unknown parameters, 𝑎𝑖, are linear coefficients. The process 

does not need to assume a particular functional form. The Euclidean distance (𝑑𝑖
2) is 
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estimated between an input vector and the weights, which are then rescaled by the 

smoothing factor. The radial basis output is then the exponential of the negatively weighted 

distance. 

 

 
Figure 12. Schematic diagram of generalized regression neural network 

 

The GRNN equations are as follows: 

 

𝑑𝑖
2 = (𝑋 − 𝑋𝑖)𝑇(𝑋 − 𝑋𝑖) (21) 

𝑌(𝑋) =
∑ 𝑌𝑖

𝑛
𝑖=1 𝑒𝑥𝑝 (−

𝑑𝑖
2

2𝜎2)

∑ 𝑒𝑥𝑝 (−
𝑑𝑖

2

2𝜎2)𝑛
𝑖=1

 (22) 

 

The approximation function 𝑌(𝑋) can be conceived as a weighted average of all observed 

amounts, 𝑌𝑖, where each of which is weighted exponentially according to its Euclidian 

distance relative to 𝑋. And 𝑌(𝑋) is the sum of the Gaussian distributions gathered at each 

training sample. However, the sum is not restrained to be the Gaussian. According to this 

theory, r expresses the smoothing factor, and the optimum smoothing factor can be 

calculated, after satisfying runs based on the mean squared error (MSE), Eq. (23), of the 

computed amounts, which must be kept at a minimum. This process refers to the training of 

the network. If several iterations pass without an increase in the mean squared error, the 

smoothing factor is specified as the optimum one for that data set. In the production step, the 

smoothing factor is applied to data sets that the network has not observed before. While 

employing the network to a new set of data, a raise in the smoothing factor would cause a 

reduction in the range of output values [48, 49]. In the GRNNs, there are no training 

parameters such as the learning rate, momentum, optimum number of neurons in the hidden 

layer, and learning algorithms as required to be determined in backpropagation neural 

networks. Besides, the GRNN has a high pace in approximation in comparison with the 

BPNNs. In the GRNNs structure, there is a smoothing factor that its optimum amount is 

determined by a try and error procedure. The smoothing factor needs to be greater than 0 

and ranges from 0.1 to 1 with moderate upshots. The number of neurons in the input layer is 
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as same as the number of inputs in the problem, the number of neurons in the output layer 

matches the number of outputs, and the number of hidden layer neurons is training patterns. 

The GRNN networks may be more accurate than the BPNNs when there are multiple 

outputs because the GRNN networks compute each output separately from the other outputs. 

The GRNN networks operate by distinguishing the discrepancy between the given sample 

patterns and patterns in the training set. 

 

𝑀𝑆𝐸 =
1

𝑛
∑ [(𝑌𝐺𝑅𝑁𝑁)𝑖 − (𝑌𝑒𝑥𝑝)

𝑖
]

𝑛

𝑖=1

2

 (23) 

 

1.3.4.1 Generalized regression neural networks VS. backpropagation neural networks 

There are many distinctions between GRNN and BPNN. Initially, GRNNs are single-pass 

learning algorithm, whereas BPNNs requires two moves: forward and backward pass, which 

means GRNNs are significantly less time-consuming regarding training process. Also, the 

only free parameter in GRNNs is the smoothing parameter 𝜎, but in BPNNs, more 

parameters are needed such as weights, biases, and learning rates. Although BPNN has a 

limited predefined size, since GRNN is an auto-associative memory network, it will store all 

the different input/output samples. Finally, GRNN is based on the general regression theory, 

whereas BPNNs are according to the gradient-descent iterative optimization method. The 

most remarkable advantage of GRNN over BPNN is the less training time, which proves its 

preference for dynamic systems modeling and control. Additionally, GRNN has less testing 

error, which means it has better generalization capacities than BPNN. 

 

 

2. STRUCTURAL MODEL AND CONFIGURATION PROCESSING 
 

In this paper, the considered model is a double-layer barrel vault, Fig. (13), which is 

generated utilizing FORMIAN, connected by MERO type of joints with the lengths of 8 m 

in x-direction divided into 8 spans and 16 m in y-direction divided into 12 spans and 

consisting of 768 bar elements whose diameters have been chosen haphazardly from 5 cm to 

10 cm. Their corresponding section areas are the input data of neural networks. The height 

of the model is 4 m. Due to the symmetry of the model, one-fourth of the structure is 

considered in the formation of the neural nets so the elements have been classified into 202 

groups of four and two. In other words, 202 sections have been made and the amount of 

their diameters have been selected randomly. The structure is supported along y-direction in 

the first and last rows. The sum of dead load and live load equal to 10 kN is applied as the 

concentrated load to each node of the top layer. All the nodes are considered to be ball-

jointed. Then the analyses have been carried out 120 times utilizing section areas as input 

data and the maximum obtained element stresses are used as output data for neural 

networks. As illustrated, 120 pairs of input and output data consisting of section areas and 

element stresses are generated and 80 pairs of which are for training and 40 ones are for 

validation of the neural networks. 
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Figure 13 Plan and the elevation of the model 

 

 

3. TRAINING AND TESTING THE NETWORKS 
 

The numerical experiment has been carried out with two main aims. The former is the 

comparative study of the responses of the nets when large-scale structures are studied. The 

latter is investigating the features of each net. As the number of input-output units increases, 

there must be a rise in the number of training pairs leading to a reduction in the associated 

errors in the net response. In this example, the input units are the cross-sectional areas of the 

double-layer barrel vault, and the output units are their corresponding element stresses. 

To train the networks, 120 pairs as input-output data, cross-sectional area, and element 

stresses are utilizes. The diameters of cross-sectional areas are generated haphazardly 

between 5 cm and 10 cm. One-tenth of the training pairs, as extra pairs, are created to verify 

the accuracy of the nets. To make a reasonable comparison among the nets, after the training 

process is accomplished, the same test data are given to the networks to show their 
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efficiency. 

3.1 Feedforward backpropagation neural network 

The nets have been trained employing 120 pairs. The regression concerning training, test, 

validation, and all data is depicted in Fig. (14). The performance index is MSE. The 

performance of the FFBP employing 120 training pairs is shown in Fig. (15), which became 

the best at epoch 5.  

 

 
Figure 14. Regression of data in FFBP 
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Figure 15. Performance of FFBP net 

 

3.2 Radial basis function 

The RBF networks have been also trained utilizing 120 training pairs. According to the 

training and testing the data, the regression of training, test, and all data is shown in Fig. 

(16). The performance is scrutinized using Mean Square Error being illustrated in Fig. (17). 

 

 
Figure 16. Regression of data in RBF 
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Figure 17. Performance of RBF net 

 

3.3 Extended radial basis function 

To train the ERBFs, 120 pairs have been employed so as to figure out the efficiency of the 

trained neural networks. After training is performed, based on the desired data and the 

upshot of the nets, the regression of data is obtained, Fig. (18), for training, test, and all data. 

Also, the MSE of the trained RBF, as its performance, is outlined in Fig. (19). 

 

 
Figure 18. Regression of data in ERBF 
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Figure 19. Performance of ERBF net 

 

3.4 Generalized regression neural networks 

The training procedure of GRNNs has been achieved the same as for the other neural 

networks, i.e., 120 training pairs have been applied. Also, for training, test, and all data 

regression diagrams are drawn in Fig. (20). 

 

 
Figure 20. Regression of data in GRNN 
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3.5 Numerical comparison 

To perceive how efficiently the nets have been trained and make a comparison among them, 

an untrained vector comprising 32 cross-sectional areas representing the whole model is 

given to each trained net. Then, their output, which is the maximum corresponding element 

stress, is recorded. Furthermore, the exact amount of maximum element stresses are 

obtained employing the numerical solution. Finally, the results of element stresses using all 

the networks and the numerical solution are written in Table. 3. 

 
Table 3: The response NNs to a given untrained input vector 

Section 
Element Stress (

𝑵

𝒄𝒎𝟐) 

Numerical Neural Network (120 Pairs) 

Number 
Area 

(𝑐𝑚2) 

Exact 

Amount 
FFBP RBF ERBF GRNN 

1 46.74907 -546.0807 -560.1753 -560.4302 -540.84146 -532.12377 

2 24.52289 -163.1838 -159.6127 -160.9418 -166.12039 -166.81372 

3 43.04328 -395.3864 -387.5324 -405.0569 -390.73675 -402.71861 

4 77.05776 -759.0589 -752.6798 -767.9333 -771.7176 -772.43881 

5 44.93941 -436.0524 -447.6335 -426.9525 -439.61121 -420.5362 

6 19.77579 299.5042 302.8521 296.1289 302.00252 288.48064 

7 68.06063 176.9286 179.7267 182.7280 173.41278 181.17235 

8 33.71613 266.3167 272.1016 261.0659 262.92627 276.39468 

9 44.03739 -890.1339 -913.0991 -862.2477 -878.24619 -865.28523 

10 67.11493 -90.0986 -91.95266 -88.3105 -88.820506 -87.593646 

11 36.98962 -253.9258 -249.0007 -258.7874 -255.85594 -259.05353 

12 75.34654 -280.4369 -272.7679 -269.7914 -285.96273 -272.34674 

13 42.88528 -515.0185 -506.2473 -498.3544 -524.61768 -530.95858 

14 35.07259 156.1594 160.0670 161.3561 152.62773 159.99420 

15 60.82953 159.6092 156.1714 156.4226 160.59932 155.94600 

16 40.29653 -921.8512 -937.6833 -908.3292 -932.99541 -896.00359 

17 34.87867 -1069.3252 -1043.169 -1101.047 -1052.8461 -1035.104 

18 23.42341 250.4017 256.3137 246.2489 247.34338 259.55390 

19 30.66882 172.4522 169.6198 169.0479 174.88471 177.02557 

20 52.86815 -222.0101 -216.6454 -230.8457 -219.33401 -229.5519 

21 26.88380 220.3437 222.9577 225.1768 217.23190 211.75520 

22 51.08055 170.5413 171.9706 165.6984 172.34549 174.40178 

23 23.71080 167.7112 170.0481 169.8109 170.15136 173.48308 

24 59.92057 -150.2564 -146.8854 -156.2614 -151.0266 -145.77504 

25 64.00378 319.0812 313.6087 327.4176 312.49966 326.79678 

26 25.99343 182.0039 187.0325 177.0407 186.16890 176.22752 
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27 35.26284 -216.6691 -218.8490 -210.9983 -221.61046 -211.6718 

28 49.66660 362.9856 359.1206 369.1183 354.37263 351.76148 

29 36.78939 -356.8501 -361.1355 -346.0283 -362.88385 -348.18525 

30 27.09467 -670.3521 -654.0866 -659.3195 -681.09955 -686.31111 

31 50.94889 -291.0786 -296.0048 -283.5514 -285.93122 -299.76055 

32 71.63778 -115.6890 -119.1024 -111.1855 -114.56339 -120.2645 

 

 

4. CONCLUDING REMARKS AND DISCUSSION 
 

To conclude, not only can FFBP, RBF, ERBF, and GRNN neural networks be efficiently put 

into practice for the analysis of double-layer barrel vaults but also, they can be employed for 

the analysis, design, and optimization of other large-scale space structures such as grids and 

domes. The application of neural networks to problems in structural mechanics provides a 

near-optimal solution with a considerable reduction in computational time. Moreover, the 

following conclusions are derived: 

 The performance of all four neural nets in the analysis of the double-layer barrel vault is 

satisfactory. 

 The networks can efficiently be utilized for the analysis with at most 4% error. 

 For a fixed number of training cycles, RBF works better than FFBP and results in better 

accuracy. 

 Errors in FFBP are in general less than RBF for a regular number of training cycles. 

 The use of Tangh for RBF and Sigmoid for FFBP causes a higher convergence rate and 

lower errors. 

 The most significant advantage of GRNN is less training time. 

 Employing extension in RBF (ERBF) expands the RBFs ability for extrapolating and 

generalizing leading to less error in the approximation.  

 The FFBP has very accurate responses due to its prominent approximation ability. 

 The best performance and the maximum accuracy occurred in ERBF. 
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