

INTERNATIONAL JOURNAL OF OPTIMIZATION IN CIVIL ENGINEERING

Int. J. Optim. Civil Eng., 2021; 11(1):113-141

ANALYSIS OF DOUBLE-LAYER BARREL VAULTS USING

DIFFERENT NEURAL NETWORKS; A COMPARATIVE STUDY

A. Kaveh*, † and A. Eskandari

School of Civil Engineering, Iran University of Science and Technology, Narmak, Tehran,

Iran

ABSTRACT

The artificial neural network is such a model of biological neural networks containing some

of their characteristics and being a member of intelligent dynamic systems. The purpose of

applying ANN in civil engineering is their efficiency in some problems that do not have a

specific solution or their solution would be very time-consuming. In this study, four

different neural networks including FeedForward BackPropagation (FFBP), Radial Basis

Function (RBF), Extended Radial Basis Function (ERBF), and Generalized Regression

Neural Network (GRNN) have been efficiently trained to analyze large-scale space

structures specifically double-layer barrel vaults focusing on their maximum element

stresses. To investigate the efficiency of the neural networks, an example has been done and

their corresponding results have been compared with their exact amounts obtained by the

numerical solution.

Keywords: structural analysis; double-layer barrel vaults; neural networks; feedforward

backpropagation; radial basis function; extended radial basis; generalized regression neural

network; element stresses.

Received: 5 December 2020; Accepted: 12 February 2021

1. INTRODUCTION

1.1 Barrel vaults

The interest of utilizing skeletal space frames to cover huge column-free bays due to their

remarkable advantages such as low cost, lightweight, small deflection because of high

inherent stiffness, three-dimensional action in carrying loads, etc., has been increased.

*Corresponding author: School of Civil Engineering, Iran University of Science and Technology, Narmak,

Tehran, Iran
†E-mail address: alikaveh@iust.ac.ir (A. Kaveh)

A. Kaveh and A. Eskandari

114

Distinct types of skeletal space frames, which are often categorized as grids, domes, and

barrel vaults, are mainly put in practice in sports stadiums, exhibition centers, assembly

halls, swimming pools, shopping arcades, and industrial buildings which are typical

instances of structures where large unobstructed areas and minimum interference from

internal supports are architecturally required.

Barrel vault, a very popular type of skeletal space frames, is one of the oldest forms

which was improved in the nineteenth century by the use of iron bars [1]. These bars act as

horizontal tie members to withstand the horizontal thrust from the vault and make structures

supported on slender walls or columns. The earlier types of barrel vaults were constructed as

single-layer structures and to cover large spans double-layer systems can be utilized which

are statically indeterminate. In double-layer barrel vaults, due to the rigidity, the risk of

instability can almost be neglected. The use of this type of barrel vaults escalates the

stiffness of the vault structures and provides structural systems of great potential, capable of

having bays in excess of 100 m. Consequently, they are considered large-scale structures, so

their design requires enough precision to be optimum [2]. Regarding their optimization,

Kaveh et al. have done many types of research [3-8].

Braced barrel vaults [1] are formed on a cylindrical surface with a circular basic curve.

However, there is a possibility of utilizing other forms such as a parabola, ellipse, or

funicular. Fig. (1) depicts the habitual arrangement of braced barrel vaults. The type of

braced barrel vaults and the location of supports expressed as L/R, influence its structural

behavior where L and R represent the distance between the supports in the longitudinal

direction and the radius of curvature of the transverse curve, respectively.

Figure 1. Braced barrel vaults

The response of braced barrel vaults while subjected to loading has been identified in

three principal modes in the following [1]:

(a) Arch mode:

If the structure is only supported along its sides, it behaves as an arch structure, Fig. (2a).

This type of structure relies on circumferential bending stiffness to resist displacement in the

radial direction and also can be considered as a relatively soft structure.

(b) Beam mode:

If a barrel vault is only supported at its ends, it acts as a simple beam, Fig. (2b), which

ANALYSIS OF DOUBLE-LAYER BARREL VAULTS USING DIFFERENT … 115

has longitudinal compressive stresses near the crown of the vault, longitudinal tensile

stresses towards the free edges, and shear stresses towards the supports. To compare with the

arch structure, this type of structure is relatively stiff and brittle. The end support could be

provided by a thin diaphragm. If the diaphragm is rigid, the structure will behave as an

encastre beam instead of a pinned one. Also, If the diaphragm is rigid but allowed to rotate,

then this will only affect stresses near the end of the structure due to the Saint-Venant effect.

(c) Shell mode:

If a barrel vault is supported along both sides and both ends, Fig. (2c), the structure

responds as a thin shell. Despite the fact that this structure looks as if it is partly an arch and

partly a beam, there is a need for radial deflection of the structure to behave as an arch

structure which is prevented by transverse shear in the shell. This means that the loads acting

on the structure will be supported by a complex system of forces acting tangentially to the

surface of the barrel vault.

(a) Arch mode

(b) Beam mode

(c) Shell mode

Figure 2. Principal modes of braced barrel vaults

1.2 Formex algebra and formian fundamentals

In the analysis of double-layer barrel vaults, numerous nodes and members are involved

which make them time-consuming. So, configuration processing is an issue that can be

simplified utilizing the concept of Formex algebra [9] or the theory of graphs [10]. Formex

algebra is a mathematical system consisting of a set of abstract objects known as formices

and a number of rules in accordance with which these objects can be manipulated. It

implements a favorable basis for solutions to problems in data generation and computer

graphics. This mathematical system has simplified configuration processing in large scale

structures such as double-layer grids, barrel vaults, domes. The early ideas on which Formex

algebra is based were developed by Prof. H. Nooshin during the years 1972-1973. The

advantages of Formex formulation for data generation have been outlined by Nooshin [11]

in the following:

 The process of data generation for structural systems is significantly simplified. The more

complicated a structure is, the more beneficial it is to resort to Formex formulation.

 The decrease in storage requirements can be enormous. For large-scale structures, the

storage needed data in the explicit form is several hundred times more than that

demanded for data stored in the Formex format.

 While the design proceeds, the formulation can be modified as simply as changing a

document on a word processor, and it can be manipulated to reflect the contemporary

status after making any necessary changes in geometry, loading, or support conditions.

A. Kaveh and A. Eskandari

116

 It is drawing a configuration to generate the data for the intended structure, that is

essential. However, once the Formex formulation is obtained, the upshot can be displayed

on a monitor or printed.

 An implied or actual nodal ordering system is required neither for a Formex description

of a configuration nor for obtaining stress analysis by utilizing the input data in a

compatible stress analysis software.

 The Formex data generation is more advantageous compared with other available

schemes that are analysis software dependent and consequently lack versatility. On the

other hand, the input data produced by the Formex formulation can be employed, via

Formian, in a variety of analysis software, such as SAP2000, ABAQUS, and LUSAS.

In the Formex algebra, structural elements are defined based on their positions towards

three basic directions U1, U2, and U3 being considered as suitable counterparts to axes X,

Y, and Z in the three-dimensional Cartesian system. Parallel lines relative to these basic

directions are named normat lines, and points of their intersections are known as normat

points. Programmers determine distances between these normat lines individually. In the

following instance, Fig. (3), the distances are considered a unity. In the Formex algebra, for

example, the location of node C set in the lower layer is represented by three successive

numbers separated by colons and put inside square brackets as: [1, 1, 0] an element of the

top layer located between nodes A and B, Fig. (3), is described as: [2, 2, 1; 4, 2, 1], where

the third coordinate indicates the position of the lower or the top layer measured along with

the third direction U3. Member CD located in the lower layer is described as: [1, 1, 0; 3, 1,

0], while the cross-brace AD is expressed as: [2, 2, 1; 3, 1, 0].

Figure 3. Configuration of component parts of space truss

In the following, a sample of the double-layer barrel vault, Fig. (4), and its corresponding

programming language in Formian, Fig. (5), are shown.

ANALYSIS OF DOUBLE-LAYER BARREL VAULTS USING DIFFERENT … 117

Figure 4. Plan and elevation of the double-layer barrel vault

(*) Double-layer Barrel Vault (*)

M= ; (*) top modules along with U2 (*)

N= ; (*) top modules along with U3 (*)

S= ; (*) span (*)

H= ; (*) rise (*)

D= ; (*) depth (*)

L= ; (*) length (*)

v=0; (*) view adjuster (*)

A=2*atan|(2*H/S); (*) sweep angle (*)

Rt=S/(2*sin|A); (*) top radius (*)

Rb=Rt-D; (*) bottom radius (*)

TOP=rinit(M,N+1,2,2)|[Rt,0,0; Rt,2,0]#

rinit(M+1,N,2,2)|[Rt,0,0; Rt,0,2];

BOT=rinit(M-1,N,2,2)|[Rb,1,1; Rb,3,1]#

rinit(M,N-1,2,2)|[Rb,1,1; Rb,1,3];

WEB=rinit(M,N,2,2)|lamit(1,1)|[Rt,0,0; Rb,1,1];

B=TOP#BOT#WEB;

B1=bc(1,A/M,L/(2*N))|B;

BV=verad(0,0,90-A)|B1;

use &,vm(2),vt(2),

vh(v,2.75*Rt,-Rt,0,0,Rt,0,1,Rt);

clear; draw BV;
Figure 5. Formian programming of the double-layer barrel vault

1.3 Neural networks

Artificial neural networks (ANNs) are not only massive parallel computational models but

also mathematical machine learning techniques that imitate the mechanism of learning in

biological organisms consisting of a large number of processing elements called neuron

which are connected to one another by the use of axons and dendrites and connecting

regions between axons and dendrites are referred to as synapses, Fig. (6a) [12, 13]. The

structure of ANNs, which is similar to that of a human brain, contains a large number of

A. Kaveh and A. Eskandari

118

processing elements each of which can have many inputs but only one output. Each output,

however, branches out to the input of many other processing elements. The topology of

ANNs might be in the form of either feed-forward or recurrent and their corresponding

learning can be supervised or unsupervised depending on their topology. Feedforward neural

networks are usually trained utilizing supervised training procedures. During the process,

output signals are obtained by the translation of input signals using an appropriate transfer

function. Weights, which are strengths for processing elements, are applied to input signals

according to their importance. After receiving all input signals by processing elements, it

computes the total input being received from its input paths based on these weights, Fig.

(6b), i.e.,

𝑛𝑒𝑡𝑃𝑡 = ∑ 𝑤𝑠𝑡𝑜𝑃𝑠

𝑠

 (1)

where 𝑤𝑠𝑡 is the connecting weight from s the source layer to t the target layer and 𝑜𝑃𝑠 is the

output produced using pattern p as the result of the input 𝑜𝑃(𝑠−1).

Although ANNs do not really solve the problem in a strictly mathematical sense, they

demonstrate information processing characteristics that provide an approximate solution to a

given problem. A trained network demonstrates some various pros over the mathematical

process of computation. It provides a swift mapping of a given input into the desired output

quantities. The application of ANNs is even more significant in nonlinear structural analysis

and also as a rapid reanalyzer in optimal design. There has been significant interest in the

application of neural networks in subjects of structural analysis and design [14-26]. In this

paper, four artificial neural networks, namely FFBP, RBF, ERBF, and GRNN are applied to

analyze space structures. Various aspects of these nets and parameters affecting the

performance of each net are investigated. One example is presented and a comparison has

been made on the performance of these nets. The response of each net for the same input has

been compared to illustrate their efficiency.

(a)

(b)

Figure 6. Neural network: (a) biological neuron, (b) artificial neural network

ANALYSIS OF DOUBLE-LAYER BARREL VAULTS USING DIFFERENT … 119

1.3.1 Feedforward backpropagation

1.3.1.1 Backpropagation neural nets

The backpropagation learning algorithm was first introduced by Parker [27] and Werbos

[28] independently, and it became generalized and developed into a workable process by

Rumelhart et al [29]. Various applications have been ascertained for backpropagation since

1986. Single-layer networks may not have the decision-making complexity required to solve

a broad range of structural engineering problems. Due to this deficiency, multi-layer

networks have been promoted from single-layer networks that are capable of learning any

constant mapping to arbitrary accuracy. The training procedure of this net comprises three

stages including the feedforward of the input training pattern, the calculation and

backpropagation of the correlated error, and the adjustment of the weights. The delta error

backpropagation algorithm is habitually employed for its supervised learning. It is

essentially a steepest descent algorithm to adjust the weight connection strength. After

training, the application of the net involves only the computations of the feedforward phase.

Even if the training is time-consuming, a trained net can produce its output so rapidly. The

method of training employed in this paper is backpropagation. This approach is one of the

most successfully and widely utilized algorithms in artificial neural networks. In

backpropagation, learning is accomplished when a set of training pairs is propagated through

a network consisting of an input layer, one or more hidden layers, and an output layer. Each

layer has its corresponding units and weight connections.

The procedure of the output layer is computing outputs, then subtracted from their exact

amounts (target outputs) to obtain a sum of square error that illustrates the level at which the

network has learned the input-output data and gradient of the learning process.

The output of a unit is obtained by passing the value of the net-sum through the

activation function as:

𝑂𝑝𝑡 = 𝑓𝑡(𝑛𝑒𝑡𝑝𝑡) (2)

The sum of the squares of the error for a single pattern at the output units is calculated

by:

𝐸𝑝 =
1

𝑁𝑜𝑢𝑡𝑝𝑢𝑡
∑ (𝑡𝑝 − 𝑜𝑝)

2
𝑛𝑒𝑡𝑤𝑜𝑟𝑘

𝑜𝑢𝑡𝑝𝑢𝑡𝑠

 (3)

where 𝐸𝑝 is the measure of the error of pattern 𝑝, 𝑡𝑝 is the target output, 𝑜𝑝 is the obtained

output at the output nodes, and 𝑁𝑜𝑢𝑡𝑝𝑢𝑡 is the number of the output units.

After processing all patterns, the total sum of the error is given by:

𝐸 =
1

𝑃𝑁𝑜𝑢𝑡𝑝𝑢𝑡
∑ ∑ (𝑡𝑝 − 𝑜𝑝)

2
𝑛𝑒𝑡𝑤𝑜𝑟𝑘

𝑜𝑢𝑡𝑝𝑢𝑡𝑠𝑃

 (4)

A. Kaveh and A. Eskandari

120

where 𝑃 is the number of all patterns in the training set. The delta signal for the output layer

is defined as:

δpt = (t𝑡𝑝 − opt)fṫ(netpt) (5)

and for the hidden layers:

δpt = fṫ(netpt) ∑ δpt

k

wkt (6)

The derivative of the activation function that is utilized in Eq. (5) is given as:

fṫ =
∂o𝑝𝑡

∂net𝑝𝑡

= o𝑝𝑡(1 − o𝑝𝑡) (7)

where 𝑘 indicates an upper layer unit (the output layer is the uppermost, and the input layer

is the lowermost layer).

The learning rule associated with the backpropagation method is known as the

generalized delta rule [31]. According to this rule, to modify the weights in the network, for

a given pattern 𝑝, the following relation can be employed:

Δwst(𝑛) = ηδpto𝑝𝑡 + αwst(n − 1) (8)

where 𝑛 is the input-output presentation number and ℎ is the learning rate and 𝑎 is the

momentum.

The momentum,𝑎 , is a fraction that is multiplied by the previous weight change and

added to the current weight change; 𝑎 should be positive and less than 1. These two terms

are not independent and should be selected and adjusted as a pair. Although the dynamic

adjustment of both parameters can generally accelerate convergence, a tremendous value for

either ℎ or 𝑎 may lead to instability in the training process. Once the change to the weights

is observed, the new weights are measured as:

wst(𝑛 + 1) = wst(𝑛) + Δwst(𝑛) (9)

The errors are usually huge at the commencement of the learning process, which requires

more changes in weights in the preceding stages of the learning process. By applying the

backpropagation procedure, the network determines delta signals for the output layer and

hidden layers, utilizing Eqs. (5) and (6), respectively. These deltas are employed to measure

the changes for all amounts of weight according to Eq. (8) and the subsequent weight values

using Eq. (9).

ANALYSIS OF DOUBLE-LAYER BARREL VAULTS USING DIFFERENT … 121

1.3.1.2 Feedforward neural networks

In artificial neural networks, feedforward neural networks (FFNN) incorporate a set of

processing elements called neurons [30, 31]. Feedforward neural networks, trained with a

backpropagation learning algorithm, Fig. (7), are the most popular neural networks

employed for a wide variety of applications. There are no cycles or loops in feedforward

networks. In such networks, the information moves only in the forward direction, from the

input layer, through the hidden layers, and to the output layer. Through the procedure, each

neuron computes the sum of the weights of the inputs at the presence of a bias and passes

this sum through an activation function, such as the sigmoid function, so that the output is

obtained. This process can be represented as follows:

ℎ𝑗 = ∑ 𝑖𝑤𝑗,𝑖

𝑚

𝑖=1

𝑥𝑖 + ℎ𝑏𝑗 (10)

where 𝑖𝑤𝑗 ,i is the weight connecting neurons [𝑖 = (1, 2,... 𝑚), and [𝑗 = (1, 2,..., [𝑟,𝑘]) ℎ𝑏𝑗

is a bias in the hidden layer, 𝑚 is the total number of neurons in the input layer, 𝑥𝑖 is the

corresponding input data, 𝑟, 𝑘 is the total number of neurons in the hidden layers, and 𝑛 is

the total number of neurons in the output layer.

Figure 7. The topology of the feedforward backpropagation network with two hidden layers

The training process is attained to modify the weights and bias until some error criterion

is observed. Above all, one predicament is to select a proper training algorithm. Moreover, it

is very complex to design the neural network because of numerous elements, such as the

number of neurons in the hidden layer, the interconnection between neurons and layer, error

function, and activation function that influence the performance of training. The training

procedure begins with arbitrary values of the weights, which might be random numbers, and

A. Kaveh and A. Eskandari

122

proceeds iteratively. Each iteration of the complete training set is termed an epoch. In each

one, the network adjusts the weights in the direction that decreases the error. As the iterative

process of incremental adjustment continues, the weights progressively converge to the

locally optimal set of values. A multitude of epochs is usually required before training is

completed. For a supplied training set, the backpropagation learning proceeds in either

pattern mode or batch mode. The former performs weight updating after each training

pattern. The latter, however, does so after all training sets. The pattern mode is preferred

over the batch mode because it demands less local storage for each synaptic connection.

Furthermore, given that the patterns are haphazardly presented to the network, the use of

pattern-by-pattern updating of weights makes the search in weight space stochastic, which

reduces the probability of being trapped in a local minimum through the back-propagation

algorithm. On the other hand, the use of the batch mode of training provides a more accurate

estimation of the gradient vector [32, 33].

In the prediction mode, data flows forward through the network, from inputs to outputs.

The network processes one example at a time, producing an estimation of the output value(s)

based on the input value(s). The resulting error is utilized to evaluate the quality of

prediction of the trained network. In back-propagation learning, the procedure commences

with a training set and employs the back-propagation algorithm to compute the synaptic

weights of the network. The aim is to design a generalized neural network. A network is

termed generalized if it precisely computes the input-output relationship for input-output

patterns never used in training the network [34]. When the learning process has been done

by too many iterations (i.e. the neural network is overtrained or overfitted, while there is no

difference between overtraining and overfitting), the neural network may memorize the

training data which makes the neural network less capable of generalizing similar input-

output patterns. The neural network produces nearly thorough results for data from the

training set but fails for data from the test set. Overfitting can be compared to an improper

choice of the degree of polynom in the polynomial regression. Severe overfitting can occur

with noisy data, even when there are numerous training cases than weights. The basic

condition for good generalization is the existence of an adequately large set of training

cases. This training set must be at the same time and a representative subset of all cases that

are the aim of generalization. The importance of this condition is related to the fact that there

are two various types of generalization: interpolation and extrapolation. Interpolation uses

cases that are more or less surrounded by nearby training cases; otherwise, that is

extrapolation. In particular, cases that are outside the range of the training data need

extrapolation. Although interpolation can often be done reliably, extrapolation is notably

unreliable. Consequently, it is important to have sufficient training data to evade the need for

extrapolation.

1.3.2 Radial basis function

The idea of employing RBFs as approximation functions was first introduced by Hardy [35]

in 1971 when he applied the multiquadric RBFs to fit irregular topographical data. RBF

neural networks were addressed in 1988 [36], which have recently drawn much attention due

to their significant generalization capability and also simple network structures that limit

unnecessary and lengthy calculations in comparison with the Multilayer Feedforward

ANALYSIS OF DOUBLE-LAYER BARREL VAULTS USING DIFFERENT … 123

Network (MFN). Some studies of universal approximation theorems on RBF have revealed

that any nonlinear function over a compact set with arbitrary accuracy can be approximated

by RBF neural network [37, 38]. Radial Basis Function Neural Networks (RBF) are

universal approximators and a particular type of feedforward neural networks with radial

basis functions employed as activation functions. RBF neural networks are commonly

implemented for regression, classification, pattern recognition, and time series forecasting

problems. Besides their great global approximation capability, RBFs benefit from other

powerful features such as the compact structure, being able to approximate any continuous

network, and their tolerance to noise. Similarly, to any other neural networks, a fundamental

element in the performance of RBF is the learning procedure. The aspiration of this process

is to tune the parameters of the neural network so as to minimize some error criterion. An

RBF neural network with a typical topology of a single hidden layer has three principal

parameters including the connection weights, widths, and centers. The conventional

approach for training an RBF is to utilize two sequential stages training process. In the first

stage, the centers of the hidden layer and the widths are obtained by taking the advantage of

some unsupervised clustering algorithm such as k-means [39], vector quantization [40], or

decision trees [41]. In the second stage, the connection weights between the hidden layer and

the output layer are set. Habitually, these weights are determined linearly by applying the

simple linear least squares (LS), the orthogonal least squares (OLS) algorithms [42, 43], or a

gradient descent algorithm [44].

An RBF network in its simplest configuration is a three-layer feedforward neural network

whose first layer corresponds to the inputs of the network, its second is a hidden layer

consisting of several RBF nonlinear activation units, and the last one correlates to the final

output of the network. Activation functions in RBF neural networks are conventionally

implemented as Gaussian functions. Fig. (8) displays an illustration of the RBF topology.

Figure 8. Structure of RBF neural network

To demonstrate the working flow of the RBF, a set of data 𝐷 having 𝑁 patterns of (𝑥𝑝,𝑦𝑝)

is supposed where 𝑥𝑝 is the input of the data set, and 𝑦𝑝 is the actual output. The output of

the 𝑖-th activation function 𝜙𝑖 in the hidden layer of the network can be computed applying

A. Kaveh and A. Eskandari

124

Eq. (11) based on the distance between the input pattern 𝑥 and the center 𝑖.

𝜙𝑖(‖x − c𝑖‖) = exp (−
‖x − c𝑖‖

2

2𝜎𝑖
2) (11)

where ‖ . ‖ is the Euclidean norm, 𝑐𝑖 and 𝜎𝑖 are the center and width of the hidden neuron 𝑖,
respectively.

Then, the output of the node k of the output layer of the network can be calculated

utilizing the Eq. (12):

𝑦𝑘 = ∑ 𝜔𝑗𝑘

𝑛

𝑗=1

𝜙𝑗(𝑥) (12)

Most classical methods for training RBFs are conducted in two steps. In the first one, the

centers and widths are determined using some unsupervised clustering algorithm, whereas in

the second step the connection weights between the hidden layer and the output layer are

found in a way such as an error criterion like Mean Squared Error (MSE) is minimized over

all the data set.

The concept of Radial Basis Functions networks arises from the theory of function

approximation. The main features of these networks are outlined as follows:

1. They are two-layer feedforward neural networks.

2. Their hidden nodes implement a set of radial basis functions (e.g. Gaussian functions).

3. Training the networks is divided into two stages; initially, the weights from the input to

hidden layer are determined, and then the weights from the hidden to output layer are

obtained.

4. The training/learning is pretty swift.

5. RBF networks are very accurate at interpolation.

1.3.2.1 Comparison between RBF networks and BP networks

There are various similarities and distinctions between RBF and BP:

Similarities

1. Being nonlinear feedforward neural networks.

2. Being universal approximators.

3. Being employed in alike application fields.

Distinctions

1. An RBF network has normally a single hidden layer, whereas BP neural networks can

have any number of hidden layers.

2. RBFs are fully connected, while it is common for BP networks to be only partially

connected.

3. In BPs, computation nodes in separate layers share a common neuronal model and not

necessarily the same activation function. In RBF networks, however, hidden nodes (basis

functions) perform very differently and have a very distinct purpose from output nodes.

ANALYSIS OF DOUBLE-LAYER BARREL VAULTS USING DIFFERENT … 125

4. In RBFs, the argument of each hidden unit activation function is the distance between the

input and the weight (RBF centers), whereas, in Backpropagation, it is the inner outcome

of the input and the weight.

5. BP nets are frequently trained with a single global supervised algorithm, while RBF

neural networks are usually trained one layer at a time with the first layer unsupervised.

6. BPs construct global approximations to nonlinear input-output mapping with distributed

hidden representations, whereas RBF nets conduce to apply localized nonlinearity at the

hidden layer to construct local approximations. Although for approximating nonlinear

input-output mappings, the RBF networks can be trained much quicker, BP may need

fewer parameters.

1.3.3 Extended radial basis function

There are a few impediments to the conventional RBF approach, which might be limiting its

effectiveness as a metamodeling strategy, hence introducing a novel extension to the RBF

approach that successfully overcomes its contemporary deficiencies is required. More

particularly, RBF neural networks generate an interpolating surface that is unique with

respect to a supplied set of prescribed data points. Solving a square system of linear

equations results in the interpolating surface. The incapability of preventing resulting

spurious local minima is a considerable deficiency. Several researchers have suggested

modifications to the conventional RBF networks to overcome some of their restrictions. In

1987, Powell [45] offered the theory of developing the performance of RBFs by augmenting

them with a set of polynomial functions and imposing limitations, which leads to a scheme

of linear equations. Although these modifications enhance the performance of RBF neural

networks, they do not lead to an increase in their flexibility regarding the model building

process. There have been significant strides in constructing metamodels with smoothing

properties. Girosi [46] proposed the Support Vector Machine (SVM) technique from the

context of data interpolation. The SVM technique takes smoothness constraints into the

consideration to be incorporated into the model building process. Having considered the

pros and cons of RBFs, there is a necessity of introducing an approach not only containing

the advantages of RBF nets but also covering its drawbacks. Therefore, a method called the

Extended Radial Basis Function (ERBF) approach has been proposed [47], which

intentionally evades the notion of unique solvability. This new technique simplifies building

metamodels for designers and ultimately leads to more precise and efficient metamodels.

The following illustrates the development of a new type of basis functions known as the

Nonradial Basis Functions (NRBFs), which will produce an integral component of the

ERBF approach.

1.3.3.1 Nonradial basis functions

The multiquadric RBF is conceivably one of the most efficient basis functions among the

available RBFs which was the motivation for embedding some of its characteristics within

NRBFs. Nonradial basis functions, as can be realized by the name, are not functions of the

Euclidean distance r. On the contrary, they perform as individual coordinates of generic

points x relative to a given data point xi, in each dimension independently. The coordinate

A. Kaveh and A. Eskandari

126

vector is defined as ξi = x − xi, which is a vector of m components, each corresponding to a

single coordinate dimension. Hence, ξj
i is the coordinate of each point x relative to the data

point xi along the j-th dimension. Fig. (9) represents the variation between the Euclidean

distance r employed in RBFs and the relative coordinates ξ applied to NRBFs for a two-

dimensional case. The NRBFs for the i-th data point and the j-th dimension is expressed as

ϕij composed of three different components:

𝜙𝑖𝑗(𝜉𝑗
𝑖) = 𝛼𝑖𝑗

𝐿 𝜙𝐿(𝜉𝑗
𝑖) + 𝛼𝑖𝑗

𝑅 𝜙𝑅(𝜉𝑗
𝑖) + 𝛽𝑖𝑗𝜙𝛽(𝜉𝑗

𝑖) (13)

where αij
L, αij

R, and βij are coefficients to be determined based on given problems; and the

superscripts 𝐿 and 𝑅 represent left and right, respectively. Fig. (10) shows a generic basis

function along with one of the dimensions for random values of αL, αR, and β. The functions

of ϕL,ϕR, and ϕβ are illustrated in Table 1. Four distinct regions (I–IV) are drawn in Fig.

(10), each corresponding to a row in Table 1.

Table 1: Nonradial basis function

Region Range of 𝝃𝒋
𝒊 𝝓𝑳 𝝓𝑹 𝝓𝜷

I 𝜉𝑗
𝑖 ≤ −𝛾 (−𝑛𝛾𝑛−1)𝜉𝑗

𝑖 + 𝛾𝑛(1 − 𝑛) 0 𝜉𝑗
𝑖

II −𝛾 ≤ 𝜉𝑗
𝑖 ≤ 0 (𝜉𝑗

𝑖)
𝑛
 0 𝜉𝑗

𝑖

III 0 ≤ 𝜉𝑗
𝑖 ≤ 𝛾 0 (𝜉𝑗

𝑖)
𝑛

 𝜉𝑗
𝑖

IV 𝜉𝑗
𝑖 ≥ 𝛾 0 (𝑛𝛾𝑛−1)𝜉𝑗

𝑖 + 𝛾𝑛(1 − 𝑛) 𝜉𝑗
𝑖

Figure 9. Definition of coordinate 𝝃

ANALYSIS OF DOUBLE-LAYER BARREL VAULTS USING DIFFERENT … 127

(a) With tilt: 𝛽 = 0

(b) With tilt: 𝛽 ≠ 0

Figure 10. Development of nonradial basis functions

Figure 11. Nonradial basis function in two dimensions

The NRBF takes distinct forms in different regions. It is an 𝑛-th-order monomial 𝛼ξn (n

≥ 2 is an even integer) supplemented by a linear component or tilt (𝛽ξ) in the central regions

between ξ = −𝛾 and ξ = +𝛾 (regions II and III). Beyond these regions on either side

(regions I and IV), the function is linear, such that the function and its first derivative are

constant at ξ = ±𝛾. A small value of 𝛾 would cause a smaller curved portion surrounding

ξ = 0. So, 𝛾 can be considered as a smoothness parameter. Fig. (10a) shows the case where

the coefficient β = 0 (no tilt), while Fig. 4b depicts the case where 𝛽 ≠ 0. Particularly, the

parameters utilized to plot Fig. (10) are as follows: 𝑛 = 2, 𝛾 = 2.5, 𝛼𝐿 = 2, 𝛼𝑅 = 5, and

𝛽 = 4. For most real-life problems, values of 𝑛 = 2 or 4 are suggested. There is no obvious

benefit in terms of performance gain for greater values of 𝑛. Appropriate values for γ will be

influenced by the magnitudes of the design variables. Nevertheless, normalization of the

design space, say between 0 and 1, might prevent the necessity for the designer to choose a

value for 𝛾. In general, one would select a high value of 𝛾 for better smoothing properties of

the metamodels. The thorough NRBF for the 𝑖-th data point is set as the sum of the

individual basis functions in each dimension as:

𝜙𝑖(𝜉𝑖) = ∑ 𝜙𝑖𝑗(𝜉𝑗
𝑖)

𝑚

𝑗=1

 (14)

A. Kaveh and A. Eskandari

128

1.3.3.2 Metamodeling using the ERBF approach

The ERBF is a metamodeling approach that utilizes a combination of radial and nonradial

basis functions. This novel concept holds the appealing features of both classes of basis

functions: the effectiveness of the multiquadric RBFs together with the flexibility of the

NRBFs.

Combining Radial and Nonradial Basis Functions

As discussed beforehand, the ERBF approach promotes the notion of applying more than

one basis function for each data point. By using these two different basis functions, the

ERBF approximation function is as:

𝑓(𝑥) = ∑ 𝜎𝑖𝜓

𝑛𝑝

𝑖=1

(‖𝑥 − 𝑥𝑖‖) + ∑ 𝜎𝑖(𝑥 − 𝑥𝑖)

𝑛𝑝

𝑖=1

 (15)

where 𝜓(‖𝑥 − 𝑥𝑖‖) and 𝜙𝑖(𝑥 − 𝑥𝑖) are obtained in Eqs. (11) and (14), respectively.

Remark that every data point 𝑥𝑖 is correlated with two different but complementary basis

functions: a) the typical RBF represented in Eq. (11) and b) the basis function determined in

Eq. (14). By taking the advantage of the definition of NRBFs provided in Eqs. (13) and (14)

the following equation can be obtained:

𝑓(𝑥) = ∑ 𝜎𝑖𝜓

𝑛𝑝

𝑖=1

(‖𝑥 − 𝑥𝑖‖) + ∑ ∑[𝛼𝑖𝑗
𝐿 𝜙𝐿(𝜉𝑗

𝑖) + 𝛼𝑖𝑗
𝑅 𝜙𝑅(𝜉𝑗

𝑖) + 𝛽𝑖𝑗𝜙𝛽(𝜉𝑗
𝑖)]

𝑚

𝑗=1

𝑛𝑝

𝑖=1

 (16)

where ϕL, ϕR, and ϕβ are represented in Table 1. The following coefficient vectors and

their sizes are defined as:

𝛼𝐿 = {𝛼11
𝐿 𝛼12

𝐿 … 𝛼1𝑚
𝐿 … 𝛼(𝑛𝑝)(𝑚)

𝐿 }
(𝑚𝑛𝑝)×(1)

𝑇
 (17)

𝛼𝑅 = {𝛼11
𝑅 𝛼12

𝑅 … 𝛼1𝑚
𝑅 … 𝛼(𝑛𝑝)(𝑚)

𝑅 }
(𝑚𝑛𝑝)×(1)

𝑇
 (18)

𝛽 = {𝛽11 𝛽12 … 𝛽1𝑚 … 𝛽(𝑛𝑝)(𝑚)}
(𝑚𝑛𝑝)×(1)

𝑇
 (19)

{𝜎} = [𝜎1 𝜎2 … 𝜎𝑛𝑝
]

𝑇
 (20)

In addition to these vectors, the coefficient vector σ is obtained in Eq. (20). The vectors

𝛼𝐿, 𝛼𝑅, and β, just determined, contain 𝑚𝑛𝑝 elements each, and the vector 𝜎 includes 𝑛𝑝

coefficients. So, the total number of coefficients to be calculated so as to fully specify the

metamodel in Eq. (16) is given by 𝑛𝑢 = (3𝑚 + 1)𝑛𝑝.

The ERBF approach results in an underdetermined system of equations whose resulting

freedom will be judiciously employed. Types of linear systems of equations for various

ANALYSIS OF DOUBLE-LAYER BARREL VAULTS USING DIFFERENT … 129

metamodeling techniques are represented in Table 2.

Table 2: Type of linear system of equations for various metamodeling techniques

Method
Number of

equations

Number of

unknowns
Type of system

Interpolative

solutions

Solution

approach

RBF 𝑛𝑝 𝑛𝑝 Square Unique Matrix inverse

ERBF 𝑛𝑝 (3𝑚 + 1)𝑛𝑝 Underdetermined Family
Linear

programming

1.3.3.3 Features

There are numerous significant advantages in employing extension, some of which are in the

following: (1) it acts as a global nonlinear model to smoothly link together the various local

linear models; (2) it extends the RBFs capability for extrapolating and generalizing more

meaningfully; (3) it works as a unifying model that brings together the different

approximators including splines and CMAC neural network models; and (4) this ERBF

extension makes feasible the applications of statistical modeling and experiment design

techniques to the investigation of general neural network approximation models.

1.3.4 Generalized regression neural network

GRNN is a type of supervised network which has been introduced by Specht [48]. GRNN is

capable of producing constant value outputs. GRNNs are three-layer (input, hidden, and

output layer) networks in which there is one hidden neuron for each training pattern in the

hidden layer, Fig. (12). The generalized regression neural networks (GRNN) are memory-

based networks that produce estimations of continuous variables and converge to the

underlying regression surface. GRNNs are based on the estimate of probability density

functions, fast training time, and being able to model non-linear functions. The GRNN is a

one-pass learning algorithm with a massive parallel structure. It is that, even with sparse data

in a multidimensional computation space, the algorithm implements smooth transitions from

one perceived value to another. The algorithm can be employed for any regression problem

in which an assumption of linearity is not considered. GRNNs are evaluated as a normalized

Radial Basis Functions network in which there is a hidden unit centered at every training

case. These Radial Basis Function units are density functions such as the Gaussian. The only

weights that require to be determined are the widths of the RBF units. These widths are

expressed as smoothing parameters (𝑟). The main shortcoming of GRNN is not being able

to ignore irrelevant inputs without considerable modifications to the basic algorithm.

Consequently, GRNN is not likely to be the preferred choice when there are more than 5 or

6 number redundant inputs. The regression of a dependent variable, Y, on an independent

variable, X, is the calculation of the most probable value of Y for each value of X based on a

finite number of possibly noisy measurements of X and the associated amounts of Y. To

implement system identification, it is habitually essential to assume some functional forms.

In the case of linear regression, for example, the output Y is considered to be a linear

function of the input, and the unknown parameters, 𝑎𝑖, are linear coefficients. The process

does not need to assume a particular functional form. The Euclidean distance (𝑑𝑖
2) is

A. Kaveh and A. Eskandari

130

estimated between an input vector and the weights, which are then rescaled by the

smoothing factor. The radial basis output is then the exponential of the negatively weighted

distance.

Figure 12. Schematic diagram of generalized regression neural network

The GRNN equations are as follows:

𝑑𝑖
2 = (𝑋 − 𝑋𝑖)𝑇(𝑋 − 𝑋𝑖) (21)

𝑌(𝑋) =
∑ 𝑌𝑖

𝑛
𝑖=1 𝑒𝑥𝑝 (−

𝑑𝑖
2

2𝜎2)

∑ 𝑒𝑥𝑝 (−
𝑑𝑖

2

2𝜎2)𝑛
𝑖=1

 (22)

The approximation function 𝑌(𝑋) can be conceived as a weighted average of all observed

amounts, 𝑌𝑖, where each of which is weighted exponentially according to its Euclidian

distance relative to 𝑋. And 𝑌(𝑋) is the sum of the Gaussian distributions gathered at each

training sample. However, the sum is not restrained to be the Gaussian. According to this

theory, r expresses the smoothing factor, and the optimum smoothing factor can be

calculated, after satisfying runs based on the mean squared error (MSE), Eq. (23), of the

computed amounts, which must be kept at a minimum. This process refers to the training of

the network. If several iterations pass without an increase in the mean squared error, the

smoothing factor is specified as the optimum one for that data set. In the production step, the

smoothing factor is applied to data sets that the network has not observed before. While

employing the network to a new set of data, a raise in the smoothing factor would cause a

reduction in the range of output values [48, 49]. In the GRNNs, there are no training

parameters such as the learning rate, momentum, optimum number of neurons in the hidden

layer, and learning algorithms as required to be determined in backpropagation neural

networks. Besides, the GRNN has a high pace in approximation in comparison with the

BPNNs. In the GRNNs structure, there is a smoothing factor that its optimum amount is

determined by a try and error procedure. The smoothing factor needs to be greater than 0

and ranges from 0.1 to 1 with moderate upshots. The number of neurons in the input layer is

ANALYSIS OF DOUBLE-LAYER BARREL VAULTS USING DIFFERENT … 131

as same as the number of inputs in the problem, the number of neurons in the output layer

matches the number of outputs, and the number of hidden layer neurons is training patterns.

The GRNN networks may be more accurate than the BPNNs when there are multiple

outputs because the GRNN networks compute each output separately from the other outputs.

The GRNN networks operate by distinguishing the discrepancy between the given sample

patterns and patterns in the training set.

𝑀𝑆𝐸 =
1

𝑛
∑ [(𝑌𝐺𝑅𝑁𝑁)𝑖 − (𝑌𝑒𝑥𝑝)

𝑖
]

𝑛

𝑖=1

2

 (23)

1.3.4.1 Generalized regression neural networks VS. backpropagation neural networks

There are many distinctions between GRNN and BPNN. Initially, GRNNs are single-pass

learning algorithm, whereas BPNNs requires two moves: forward and backward pass, which

means GRNNs are significantly less time-consuming regarding training process. Also, the

only free parameter in GRNNs is the smoothing parameter 𝜎, but in BPNNs, more

parameters are needed such as weights, biases, and learning rates. Although BPNN has a

limited predefined size, since GRNN is an auto-associative memory network, it will store all

the different input/output samples. Finally, GRNN is based on the general regression theory,

whereas BPNNs are according to the gradient-descent iterative optimization method. The

most remarkable advantage of GRNN over BPNN is the less training time, which proves its

preference for dynamic systems modeling and control. Additionally, GRNN has less testing

error, which means it has better generalization capacities than BPNN.

2. STRUCTURAL MODEL AND CONFIGURATION PROCESSING

In this paper, the considered model is a double-layer barrel vault, Fig. (13), which is

generated utilizing FORMIAN, connected by MERO type of joints with the lengths of 8 m

in x-direction divided into 8 spans and 16 m in y-direction divided into 12 spans and

consisting of 768 bar elements whose diameters have been chosen haphazardly from 5 cm to

10 cm. Their corresponding section areas are the input data of neural networks. The height

of the model is 4 m. Due to the symmetry of the model, one-fourth of the structure is

considered in the formation of the neural nets so the elements have been classified into 202

groups of four and two. In other words, 202 sections have been made and the amount of

their diameters have been selected randomly. The structure is supported along y-direction in

the first and last rows. The sum of dead load and live load equal to 10 kN is applied as the

concentrated load to each node of the top layer. All the nodes are considered to be ball-

jointed. Then the analyses have been carried out 120 times utilizing section areas as input

data and the maximum obtained element stresses are used as output data for neural

networks. As illustrated, 120 pairs of input and output data consisting of section areas and

element stresses are generated and 80 pairs of which are for training and 40 ones are for

validation of the neural networks.

A. Kaveh and A. Eskandari

132

Figure 13 Plan and the elevation of the model

3. TRAINING AND TESTING THE NETWORKS

The numerical experiment has been carried out with two main aims. The former is the

comparative study of the responses of the nets when large-scale structures are studied. The

latter is investigating the features of each net. As the number of input-output units increases,

there must be a rise in the number of training pairs leading to a reduction in the associated

errors in the net response. In this example, the input units are the cross-sectional areas of the

double-layer barrel vault, and the output units are their corresponding element stresses.

To train the networks, 120 pairs as input-output data, cross-sectional area, and element

stresses are utilizes. The diameters of cross-sectional areas are generated haphazardly

between 5 cm and 10 cm. One-tenth of the training pairs, as extra pairs, are created to verify

the accuracy of the nets. To make a reasonable comparison among the nets, after the training

process is accomplished, the same test data are given to the networks to show their

ANALYSIS OF DOUBLE-LAYER BARREL VAULTS USING DIFFERENT … 133

efficiency.

3.1 Feedforward backpropagation neural network

The nets have been trained employing 120 pairs. The regression concerning training, test,

validation, and all data is depicted in Fig. (14). The performance index is MSE. The

performance of the FFBP employing 120 training pairs is shown in Fig. (15), which became

the best at epoch 5.

Figure 14. Regression of data in FFBP

A. Kaveh and A. Eskandari

134

Figure 15. Performance of FFBP net

3.2 Radial basis function

The RBF networks have been also trained utilizing 120 training pairs. According to the

training and testing the data, the regression of training, test, and all data is shown in Fig.

(16). The performance is scrutinized using Mean Square Error being illustrated in Fig. (17).

Figure 16. Regression of data in RBF

ANALYSIS OF DOUBLE-LAYER BARREL VAULTS USING DIFFERENT … 135

Figure 17. Performance of RBF net

3.3 Extended radial basis function

To train the ERBFs, 120 pairs have been employed so as to figure out the efficiency of the

trained neural networks. After training is performed, based on the desired data and the

upshot of the nets, the regression of data is obtained, Fig. (18), for training, test, and all data.

Also, the MSE of the trained RBF, as its performance, is outlined in Fig. (19).

Figure 18. Regression of data in ERBF

A. Kaveh and A. Eskandari

136

Figure 19. Performance of ERBF net

3.4 Generalized regression neural networks

The training procedure of GRNNs has been achieved the same as for the other neural

networks, i.e., 120 training pairs have been applied. Also, for training, test, and all data

regression diagrams are drawn in Fig. (20).

Figure 20. Regression of data in GRNN

ANALYSIS OF DOUBLE-LAYER BARREL VAULTS USING DIFFERENT … 137

3.5 Numerical comparison

To perceive how efficiently the nets have been trained and make a comparison among them,

an untrained vector comprising 32 cross-sectional areas representing the whole model is

given to each trained net. Then, their output, which is the maximum corresponding element

stress, is recorded. Furthermore, the exact amount of maximum element stresses are

obtained employing the numerical solution. Finally, the results of element stresses using all

the networks and the numerical solution are written in Table. 3.

Table 3: The response NNs to a given untrained input vector

Section
Element Stress (

𝑵

𝒄𝒎𝟐)

Numerical Neural Network (120 Pairs)

Number
Area

(𝑐𝑚2)

Exact

Amount
FFBP RBF ERBF GRNN

1 46.74907 -546.0807 -560.1753 -560.4302 -540.84146 -532.12377

2 24.52289 -163.1838 -159.6127 -160.9418 -166.12039 -166.81372

3 43.04328 -395.3864 -387.5324 -405.0569 -390.73675 -402.71861

4 77.05776 -759.0589 -752.6798 -767.9333 -771.7176 -772.43881

5 44.93941 -436.0524 -447.6335 -426.9525 -439.61121 -420.5362

6 19.77579 299.5042 302.8521 296.1289 302.00252 288.48064

7 68.06063 176.9286 179.7267 182.7280 173.41278 181.17235

8 33.71613 266.3167 272.1016 261.0659 262.92627 276.39468

9 44.03739 -890.1339 -913.0991 -862.2477 -878.24619 -865.28523

10 67.11493 -90.0986 -91.95266 -88.3105 -88.820506 -87.593646

11 36.98962 -253.9258 -249.0007 -258.7874 -255.85594 -259.05353

12 75.34654 -280.4369 -272.7679 -269.7914 -285.96273 -272.34674

13 42.88528 -515.0185 -506.2473 -498.3544 -524.61768 -530.95858

14 35.07259 156.1594 160.0670 161.3561 152.62773 159.99420

15 60.82953 159.6092 156.1714 156.4226 160.59932 155.94600

16 40.29653 -921.8512 -937.6833 -908.3292 -932.99541 -896.00359

17 34.87867 -1069.3252 -1043.169 -1101.047 -1052.8461 -1035.104

18 23.42341 250.4017 256.3137 246.2489 247.34338 259.55390

19 30.66882 172.4522 169.6198 169.0479 174.88471 177.02557

20 52.86815 -222.0101 -216.6454 -230.8457 -219.33401 -229.5519

21 26.88380 220.3437 222.9577 225.1768 217.23190 211.75520

22 51.08055 170.5413 171.9706 165.6984 172.34549 174.40178

23 23.71080 167.7112 170.0481 169.8109 170.15136 173.48308

24 59.92057 -150.2564 -146.8854 -156.2614 -151.0266 -145.77504

25 64.00378 319.0812 313.6087 327.4176 312.49966 326.79678

26 25.99343 182.0039 187.0325 177.0407 186.16890 176.22752

A. Kaveh and A. Eskandari

138

27 35.26284 -216.6691 -218.8490 -210.9983 -221.61046 -211.6718

28 49.66660 362.9856 359.1206 369.1183 354.37263 351.76148

29 36.78939 -356.8501 -361.1355 -346.0283 -362.88385 -348.18525

30 27.09467 -670.3521 -654.0866 -659.3195 -681.09955 -686.31111

31 50.94889 -291.0786 -296.0048 -283.5514 -285.93122 -299.76055

32 71.63778 -115.6890 -119.1024 -111.1855 -114.56339 -120.2645

4. CONCLUDING REMARKS AND DISCUSSION

To conclude, not only can FFBP, RBF, ERBF, and GRNN neural networks be efficiently put

into practice for the analysis of double-layer barrel vaults but also, they can be employed for

the analysis, design, and optimization of other large-scale space structures such as grids and

domes. The application of neural networks to problems in structural mechanics provides a

near-optimal solution with a considerable reduction in computational time. Moreover, the

following conclusions are derived:

 The performance of all four neural nets in the analysis of the double-layer barrel vault is

satisfactory.

 The networks can efficiently be utilized for the analysis with at most 4% error.

 For a fixed number of training cycles, RBF works better than FFBP and results in better

accuracy.

 Errors in FFBP are in general less than RBF for a regular number of training cycles.

 The use of Tangh for RBF and Sigmoid for FFBP causes a higher convergence rate and

lower errors.

 The most significant advantage of GRNN is less training time.

 Employing extension in RBF (ERBF) expands the RBFs ability for extrapolating and

generalizing leading to less error in the approximation.

 The FFBP has very accurate responses due to its prominent approximation ability.

 The best performance and the maximum accuracy occurred in ERBF.

5. ACKNOWLEDGMENT

The author would like to express great appreciation to P. Jelokhani for his valuable help and

support during this research work.

REFERENCES

1. Makowski ZS. Analysis, Design and Construction of Braced Barrel Vaults, CRC Press,

1986.

ANALYSIS OF DOUBLE-LAYER BARREL VAULTS USING DIFFERENT … 139

2. Ramaswamy GS, Eekhout M. Analysis, Design and Construction of Steel Space Frames,

Thomas Telford, 2002.

3. Kaveh A. Applications of Metaheuristic Optimization Algorithms in Civil Engineering,

Springer, Cham, 2017.

4. Kaveh A, Farahani M, Shojaei N. Optimal design of barrel vaults using charged search

system, Int J Civil Eng 2012; 10: 301-8.

5. Kaveh A, Mirzaei B, Jafarvand A. Optimal design of double layer barrel vaults using

improved magnetic charged system search, Asian J Civil Eng 2014; 15: 135-54.

6. Kaveh A, Mahjoubi S. Optimum design of double-layer barrel vaults by lion pride

optimization algorithm and a comparative study, Struct 2018; 13: 213-29.

7. Kaveh A, Mirzaei B, Jafarvand A. Shape-size optimization of single-layer barrel vaults

using improved magnetic charged system search, Int J Civil Eng 2014; 12: 447-65.

8. Kaveh A, Eftekhar B. Optimal design of double layer barrel vaults using an improved

hybrid big bang-big crunch method, Asian J Civil Eng 2012; 13: 465-87.

9. Nooshin H. Space structures and configuration processing, Prog Struct Eng Mat 1998; 1:

329-36.

10. Kaveh A. Structural Mechanics: Graph and Matrix Methods, Macmillan International

Higher Education, 1992.

11. Nooshin H, Disney P. Formex configuration processing II, Int J Space Struct 2001; 16:

1-56.

12. Fausett LV. Fundamentals of Neural Networks: Architectures, Algorithms and

Applications, Pearson Education India, 2006.

13. Patterson DW. Artificial Neural Networks: Theory and Applications. Prentice Hall PTR,

1998.

14. Berke L, Hajela P. Applications of Artificial Neural Nets in Structural Mechanics. In

Shape and Layout Optimization of Structural Systems and Optimality Criteria Methods,

Springer, Vienna, 1992, pp. 331-348.

15. Kaveh A, Khaleghi A. Prediction of strength for concrete specimiens using artificiai

neural networks, Asian J Civil Eng 2000; 1: 1-12.

16. Kaveh A, Iranmanesh A. Comparative study of backpropagation and improved

counterpropagation neural nets in structural analysis and optimization, Int J space struct

1998; 13: 177-85.

17. Kaveh A, Servati H. Design of double layer grids using backpropagation neural

networks, Comput Struct 2001; 79: 1561-8.

18. Hajela P, Berke L. Neural networks in structural analysis and design: an overview,

Comput Syst Eng 1992; 3: 525-38.

19. Iranmanesh A, Kaveh A. Structural optimization by gradient‐based neural networks, Int

J Numer Meth Eng 1999; 46: 297-311.

20. Kaveh A, Elmieh R, Servati H. Prediction of moment-rotation characteristic for semi-

rigid connections using BP neural networks, Asian J Civil Eng 2001; 2: 131-42.

21. Kaveh A, Dehkordi M R. Neural networks for the analysis and design of domes, Int J

Space Struct 2003; 18: 181-93.

22. Hajela P, Berke L. Neurobiological computational models in structural analysis and

design, Comput Struct 1991; 41: 657-67.

A. Kaveh and A. Eskandari

140

23. Kaveh A, Servati H, Fazel D D. Prediction of moment-rotation characteristic for saddle-

like connections using FEM and BP neural networks, Asian J Civil Eng 2001; 2: 11-29.

24. Kaveh A, Gholipour Y, Rahami H. Optimal design of transmission towers using genetic

algorithm and neural networks, Int J Space Struct 2008; 23: 1-19.

25. Adeli H, Seon Park H. Counterpropagation neural networks in structural engineering, J

Struct Eng 1995; 121: 1205-12.

26. Rofooei F R, Kaveh A, Farahani F M. Estimating the vulnerability of the concrete

moment resisting frame structures using artificial neural networks, Int J Optim Civil Eng

2011; 1: 433-48.

27. Parker DB. Learning Logic, Center for Computational Research in Economics and

Management Science, MIT-Press, Cambridge, 1985.

28. Werbos PJ. Generalization of backpropagation with application to a recurrent gas market

model, Neural Netw 1988; 1: 339-56.

29. Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-propagating

errors, Nature 1986; 323: 533-6.

30. Svozil D, Kvasnicka V, Pospichal J. Introduction to multi-layer feed-forward neural

networks, Chemome Intell Lab Syst 1997; 39: 43-62.

31. Faris H, Aljarah I, Mirjalili S. Training feedforward neural networks using multi-verse

optimizer for binary classification problems, Appl Intell 2016; 45: 322-32.

32. Hertz J, Krogh A, Palmer RG, Horner H. Introduction to the theory of neural

computation, Phys Today 1991; 44: 70.

33. Bertsekas DP, Tsitsiklis JN. Neuro-Dynamic Programming, Athena Scientific, 1996.

34. Wieland A, Leighton R. Geometric analysis of neural network capabilities, 1st IEEE

Inernational Conference on Neural Networks 1987: pp. 385.

35. Hardy RL. Multiquadric equations of topography and other irregular surfaces, J Geophys

Res 1971; 76: 1905-15.

36. Broomhead DS, Lowe D. Radial Basis Functions, Multi-Variable Functional

Interpolation and Adaptive Networks. Royal Signals and Radar Establishment Malvern,

United Kingdom, 1988.

37. Hartman EJ, Keeler JD, Kowalski JM. Layered neural networks with Gaussian hidden

units as universal approximations, Neural Comput 1990; 2: 210-15.

38. Park J, Sandberg IW. Universal approximation using radial-basis-function networks,

Neural Comput 1991; 3: 246-57.

39. Sing JK, Basu DK, Nasipuri M, Kundu M. Improved k-means algorithm in the design of

RBF neural networks, IEEE Conference on Convergent Technologies for Asia-Pacific

Region 2003: pp. 841-845.

40. Vogt M. Combination of radial basis function neural networks with optimized learning

vector quantization, IEEE International Conference on Neural Networks 1993: pp. 1841-6.

41. Kubat M. Decision trees can initialize radial-basis function networks, IEEE Trans

Neural Netw 1998; 9: 813-21.

42. Lin CL, Wang JF, Chen CY, Chen CW, Yen CW. Improving the generalization

performance of RBF neural networks using a linear regression technique, Expert Syst

Appl 2009; 36: 12049-53.

ANALYSIS OF DOUBLE-LAYER BARREL VAULTS USING DIFFERENT … 141

43. Chen S, Wu Y, Luk BL. Combined genetic algorithm optimization and regularized

orthogonal least squares learning for radial basis function networks, IEEE Trans Neural

Netw 1999; 10: 1239-43.

44. Neruda R, Kudovà P. Learning methods for radial basis function networks, Future

Gener Comput Syst 2005; 21: 1131-42.

45. Powell M J, Algorithms for approximation, Chap. 3, Oxford University Press, New

York, 1987.

46. Girosi F. An equivalence between sparse approximation and support vector machines,

Neural Comput 1998; 10: 1455-80.

47. Mullur AA, Messac A. Extended radial basis functions: more flexible and effective

metamodeling, AIAA J 2005; 43: 1306-15.

48. Specht DF. A general regression neural network, IEEE Trans Neural Netw 1991; 2:

568-76.

49. Beale MH, Hagan MT, Demuth HB. Neural network toolbox, User’s Guide, Math

Works 2010; 2: 77-81.

